Unverified Commit 1a69c6ff authored by Pedro Cuenca's avatar Pedro Cuenca Committed by GitHub
Browse files

Fix MPS scheduler indexing when using `mps` (#450)

* Fix LMS scheduler indexing in `add_noise` #358.

* Fix DDIM and DDPM indexing with mps device.

* Verify format is PyTorch before using `.to()`
parent 7c4b38ba
......@@ -250,6 +250,8 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
noise: Union[torch.FloatTensor, np.ndarray],
timesteps: Union[torch.IntTensor, np.ndarray],
) -> Union[torch.FloatTensor, np.ndarray]:
if self.tensor_format == "pt":
timesteps = timesteps.to(self.alphas_cumprod.device)
sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
sqrt_alpha_prod = self.match_shape(sqrt_alpha_prod, original_samples)
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
......
......@@ -251,6 +251,8 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
noise: Union[torch.FloatTensor, np.ndarray],
timesteps: Union[torch.IntTensor, np.ndarray],
) -> Union[torch.FloatTensor, np.ndarray]:
if self.tensor_format == "pt":
timesteps = timesteps.to(self.alphas_cumprod.device)
sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
sqrt_alpha_prod = self.match_shape(sqrt_alpha_prod, original_samples)
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
......
......@@ -120,7 +120,7 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
frac = np.mod(self.timesteps, 1.0)
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
sigmas = (1 - frac) * sigmas[low_idx] + frac * sigmas[high_idx]
self.sigmas = np.concatenate([sigmas, [0.0]])
self.sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
self.derivatives = []
......@@ -183,6 +183,8 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
noise: Union[torch.FloatTensor, np.ndarray],
timesteps: Union[torch.IntTensor, np.ndarray],
) -> Union[torch.FloatTensor, np.ndarray]:
if self.tensor_format == "pt":
timesteps = timesteps.to(self.sigmas.device)
sigmas = self.match_shape(self.sigmas[timesteps], noise)
noisy_samples = original_samples + noise * sigmas
......
......@@ -367,8 +367,8 @@ class PNDMScheduler(SchedulerMixin, ConfigMixin):
noise: Union[torch.FloatTensor, np.ndarray],
timesteps: Union[torch.IntTensor, np.ndarray],
) -> torch.Tensor:
# mps requires indices to be in the same device, so we use cpu as is the default with cuda
timesteps = timesteps.to(self.alphas_cumprod.device)
if self.tensor_format == "pt":
timesteps = timesteps.to(self.alphas_cumprod.device)
sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
sqrt_alpha_prod = self.match_shape(sqrt_alpha_prod, original_samples)
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment