Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
14bd3567
Commit
14bd3567
authored
Jul 01, 2022
by
Patrick von Platen
Browse files
update
parent
1468f754
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
3 additions
and
208 deletions
+3
-208
src/diffusers/models/resnet.py
src/diffusers/models/resnet.py
+1
-206
src/diffusers/models/unet_sde_score_estimation.py
src/diffusers/models/unet_sde_score_estimation.py
+2
-2
No files found.
src/diffusers/models/resnet.py
View file @
14bd3567
from
abc
import
abstractmethod
import
functools
import
numpy
as
np
import
torch
import
torch.nn
as
nn
...
...
@@ -160,211 +159,7 @@ class Downsample(nn.Module):
# return self.conv(x)
# RESNETS
# unet_score_estimation.py
class
ResnetBlockBigGANppNew
(
nn
.
Module
):
def
__init__
(
self
,
act
,
in_ch
,
out_ch
=
None
,
temb_dim
=
None
,
up
=
False
,
down
=
False
,
dropout
=
0.1
,
fir_kernel
=
(
1
,
3
,
3
,
1
),
skip_rescale
=
True
,
init_scale
=
0.0
,
overwrite
=
True
,
):
super
().
__init__
()
out_ch
=
out_ch
if
out_ch
else
in_ch
self
.
GroupNorm_0
=
nn
.
GroupNorm
(
num_groups
=
min
(
in_ch
//
4
,
32
),
num_channels
=
in_ch
,
eps
=
1e-6
)
self
.
up
=
up
self
.
down
=
down
self
.
fir_kernel
=
fir_kernel
self
.
Conv_0
=
conv2d
(
in_ch
,
out_ch
,
kernel_size
=
3
,
padding
=
1
)
if
temb_dim
is
not
None
:
self
.
Dense_0
=
nn
.
Linear
(
temb_dim
,
out_ch
)
self
.
Dense_0
.
weight
.
data
=
variance_scaling
()(
self
.
Dense_0
.
weight
.
shape
)
nn
.
init
.
zeros_
(
self
.
Dense_0
.
bias
)
self
.
GroupNorm_1
=
nn
.
GroupNorm
(
num_groups
=
min
(
out_ch
//
4
,
32
),
num_channels
=
out_ch
,
eps
=
1e-6
)
self
.
Dropout_0
=
nn
.
Dropout
(
dropout
)
self
.
Conv_1
=
conv2d
(
out_ch
,
out_ch
,
init_scale
=
init_scale
,
kernel_size
=
3
,
padding
=
1
)
if
in_ch
!=
out_ch
or
up
or
down
:
# 1x1 convolution with DDPM initialization.
self
.
Conv_2
=
conv2d
(
in_ch
,
out_ch
,
kernel_size
=
1
,
padding
=
0
)
self
.
skip_rescale
=
skip_rescale
self
.
act
=
act
self
.
in_ch
=
in_ch
self
.
out_ch
=
out_ch
self
.
is_overwritten
=
False
self
.
overwrite
=
overwrite
if
overwrite
:
self
.
output_scale_factor
=
np
.
sqrt
(
2.0
)
self
.
in_channels
=
in_channels
=
in_ch
self
.
out_channels
=
out_channels
=
out_ch
groups
=
min
(
in_ch
//
4
,
32
)
out_groups
=
min
(
out_ch
//
4
,
32
)
eps
=
1e-6
self
.
pre_norm
=
True
temb_channels
=
temb_dim
non_linearity
=
"silu"
self
.
time_embedding_norm
=
time_embedding_norm
=
"default"
if
self
.
pre_norm
:
self
.
norm1
=
Normalize
(
in_channels
,
num_groups
=
groups
,
eps
=
eps
)
else
:
self
.
norm1
=
Normalize
(
out_channels
,
num_groups
=
groups
,
eps
=
eps
)
self
.
conv1
=
torch
.
nn
.
Conv2d
(
in_channels
,
out_channels
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
)
if
time_embedding_norm
==
"default"
:
self
.
temb_proj
=
torch
.
nn
.
Linear
(
temb_channels
,
out_channels
)
elif
time_embedding_norm
==
"scale_shift"
:
self
.
temb_proj
=
torch
.
nn
.
Linear
(
temb_channels
,
2
*
out_channels
)
self
.
norm2
=
Normalize
(
out_channels
,
num_groups
=
out_groups
,
eps
=
eps
)
self
.
dropout
=
torch
.
nn
.
Dropout
(
dropout
)
self
.
conv2
=
torch
.
nn
.
Conv2d
(
out_channels
,
out_channels
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
)
if
non_linearity
==
"swish"
:
self
.
nonlinearity
=
nonlinearity
elif
non_linearity
==
"mish"
:
self
.
nonlinearity
=
Mish
()
elif
non_linearity
==
"silu"
:
self
.
nonlinearity
=
nn
.
SiLU
()
if
up
:
self
.
h_upd
=
Upsample
(
in_channels
,
use_conv
=
False
,
dims
=
2
)
self
.
x_upd
=
Upsample
(
in_channels
,
use_conv
=
False
,
dims
=
2
)
elif
down
:
self
.
h_upd
=
Downsample
(
in_channels
,
use_conv
=
False
,
dims
=
2
,
padding
=
1
,
name
=
"op"
)
self
.
x_upd
=
Downsample
(
in_channels
,
use_conv
=
False
,
dims
=
2
,
padding
=
1
,
name
=
"op"
)
if
self
.
in_channels
!=
self
.
out_channels
or
self
.
up
or
self
.
down
:
self
.
nin_shortcut
=
torch
.
nn
.
Conv2d
(
in_channels
,
out_channels
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
)
def
set_weights
(
self
):
self
.
conv1
.
weight
.
data
=
self
.
Conv_0
.
weight
.
data
self
.
conv1
.
bias
.
data
=
self
.
Conv_0
.
bias
.
data
self
.
norm1
.
weight
.
data
=
self
.
GroupNorm_0
.
weight
.
data
self
.
norm1
.
bias
.
data
=
self
.
GroupNorm_0
.
bias
.
data
self
.
conv2
.
weight
.
data
=
self
.
Conv_1
.
weight
.
data
self
.
conv2
.
bias
.
data
=
self
.
Conv_1
.
bias
.
data
self
.
norm2
.
weight
.
data
=
self
.
GroupNorm_1
.
weight
.
data
self
.
norm2
.
bias
.
data
=
self
.
GroupNorm_1
.
bias
.
data
self
.
temb_proj
.
weight
.
data
=
self
.
Dense_0
.
weight
.
data
self
.
temb_proj
.
bias
.
data
=
self
.
Dense_0
.
bias
.
data
if
self
.
in_channels
!=
self
.
out_channels
or
self
.
up
or
self
.
down
:
self
.
nin_shortcut
.
weight
.
data
=
self
.
Conv_2
.
weight
.
data
self
.
nin_shortcut
.
bias
.
data
=
self
.
Conv_2
.
bias
.
data
def
forward
(
self
,
x
,
temb
=
None
):
if
self
.
overwrite
and
not
self
.
is_overwritten
:
self
.
set_weights
()
self
.
is_overwritten
=
True
orig_x
=
x
h
=
self
.
act
(
self
.
GroupNorm_0
(
x
))
if
self
.
up
:
h
=
upsample_2d
(
h
,
self
.
fir_kernel
,
factor
=
2
)
x
=
upsample_2d
(
x
,
self
.
fir_kernel
,
factor
=
2
)
elif
self
.
down
:
h
=
downsample_2d
(
h
,
self
.
fir_kernel
,
factor
=
2
)
x
=
downsample_2d
(
x
,
self
.
fir_kernel
,
factor
=
2
)
h
=
self
.
Conv_0
(
h
)
# Add bias to each feature map conditioned on the time embedding
if
temb
is
not
None
:
h
+=
self
.
Dense_0
(
self
.
act
(
temb
))[:,
:,
None
,
None
]
h
=
self
.
act
(
self
.
GroupNorm_1
(
h
))
h
=
self
.
Dropout_0
(
h
)
h
=
self
.
Conv_1
(
h
)
if
self
.
in_ch
!=
self
.
out_ch
or
self
.
up
or
self
.
down
:
x
=
self
.
Conv_2
(
x
)
if
not
self
.
skip_rescale
:
raise
ValueError
(
"Is this branch run?!"
)
# import ipdb; ipdb.set_trace()
result
=
x
+
h
else
:
result
=
(
x
+
h
)
/
np
.
sqrt
(
2.0
)
result_2
=
self
.
forward_2
(
orig_x
,
temb
)
return
result_2
def
forward_2
(
self
,
x
,
temb
,
mask
=
1.0
):
h
=
x
h
=
h
*
mask
if
self
.
pre_norm
:
h
=
self
.
norm1
(
h
)
h
=
self
.
nonlinearity
(
h
)
# if self.up or self.down:
# x = self.x_upd(x)
# h = self.h_upd(h)
if
self
.
up
:
h
=
upsample_2d
(
h
,
self
.
fir_kernel
,
factor
=
2
)
x
=
upsample_2d
(
x
,
self
.
fir_kernel
,
factor
=
2
)
elif
self
.
down
:
h
=
downsample_2d
(
h
,
self
.
fir_kernel
,
factor
=
2
)
x
=
downsample_2d
(
x
,
self
.
fir_kernel
,
factor
=
2
)
h
=
self
.
conv1
(
h
)
if
not
self
.
pre_norm
:
h
=
self
.
norm1
(
h
)
h
=
self
.
nonlinearity
(
h
)
h
=
h
*
mask
temb
=
self
.
temb_proj
(
self
.
nonlinearity
(
temb
))[:,
:,
None
,
None
]
if
self
.
time_embedding_norm
==
"scale_shift"
:
scale
,
shift
=
torch
.
chunk
(
temb
,
2
,
dim
=
1
)
h
=
self
.
norm2
(
h
)
h
=
h
+
h
*
scale
+
shift
h
=
self
.
nonlinearity
(
h
)
elif
self
.
time_embedding_norm
==
"default"
:
h
=
h
+
temb
h
=
h
*
mask
if
self
.
pre_norm
:
h
=
self
.
norm2
(
h
)
h
=
self
.
nonlinearity
(
h
)
else
:
raise
ValueError
(
"Nananan nanana - don't go here!"
)
h
=
self
.
dropout
(
h
)
h
=
self
.
conv2
(
h
)
if
not
self
.
pre_norm
:
h
=
self
.
norm2
(
h
)
h
=
self
.
nonlinearity
(
h
)
h
=
h
*
mask
x
=
x
*
mask
# if self.in_channels != self.out_channels:
if
self
.
in_channels
!=
self
.
out_channels
or
self
.
up
or
self
.
down
:
x
=
self
.
nin_shortcut
(
x
)
result
=
x
+
h
return
result
/
self
.
output_scale_factor
# unet.py, unet_grad_tts.py, unet_ldm.py, unet_glide.py
# unet.py, unet_grad_tts.py, unet_ldm.py, unet_glide.py, unet_score_vde.py
class
ResnetBlock
(
nn
.
Module
):
def
__init__
(
self
,
...
...
src/diffusers/models/unet_sde_score_estimation.py
View file @
14bd3567
...
...
@@ -28,7 +28,7 @@ from ..modeling_utils import ModelMixin
from
.attention
import
AttentionBlock
from
.embeddings
import
GaussianFourierProjection
,
get_timestep_embedding
from
.resnet
import
downsample_2d
,
upfirdn2d
,
upsample_2d
from
.resnet
import
ResnetBlock
from
.resnet
import
ResnetBlock
def
_setup_kernel
(
k
):
...
...
@@ -464,7 +464,7 @@ class NCSNpp(ModelMixin, ConfigMixin):
groups_out
=
min
(
out_ch
//
4
,
32
),
overwrite_for_score_vde
=
True
,
up
=
True
,
kernel
=
"fir"
,
kernel
=
"fir"
,
# TODO(Patrick) - it seems like both fir and non-fir kernels are fine
use_nin_shortcut
=
True
,
)
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment