Unverified Commit 1450c2ac authored by Daniel Regado's avatar Daniel Regado Committed by GitHub
Browse files

Multi IP-Adapter for Flux pipelines (#10867)



* Initial implementation of Flux multi IP-Adapter

* Update src/diffusers/pipelines/flux/pipeline_flux.py
Co-authored-by: default avatarhlky <hlky@hlky.ac>

* Update src/diffusers/pipelines/flux/pipeline_flux.py
Co-authored-by: default avatarhlky <hlky@hlky.ac>

* Changes for ipa image embeds

* Update src/diffusers/pipelines/flux/pipeline_flux.py
Co-authored-by: default avatarhlky <hlky@hlky.ac>

* Update src/diffusers/pipelines/flux/pipeline_flux.py
Co-authored-by: default avatarhlky <hlky@hlky.ac>

* make style && make quality

* Updated ip_adapter test

* Created typing_utils.py

---------
Co-authored-by: default avatarhlky <hlky@hlky.ac>
parent cc7b5b87
...@@ -23,7 +23,9 @@ from safetensors import safe_open ...@@ -23,7 +23,9 @@ from safetensors import safe_open
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_state_dict from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_state_dict
from ..utils import ( from ..utils import (
USE_PEFT_BACKEND, USE_PEFT_BACKEND,
_get_detailed_type,
_get_model_file, _get_model_file,
_is_valid_type,
is_accelerate_available, is_accelerate_available,
is_torch_version, is_torch_version,
is_transformers_available, is_transformers_available,
...@@ -577,29 +579,36 @@ class FluxIPAdapterMixin: ...@@ -577,29 +579,36 @@ class FluxIPAdapterMixin:
pipeline.set_ip_adapter_scale(ip_strengths) pipeline.set_ip_adapter_scale(ip_strengths)
``` ```
""" """
transformer = self.transformer
if not isinstance(scale, list): scale_type = Union[int, float]
scale = [[scale] * transformer.config.num_layers] num_ip_adapters = self.transformer.encoder_hid_proj.num_ip_adapters
elif isinstance(scale, list) and isinstance(scale[0], int) or isinstance(scale[0], float): num_layers = self.transformer.config.num_layers
if len(scale) != transformer.config.num_layers:
raise ValueError(f"Expected list of {transformer.config.num_layers} scales, got {len(scale)}.") # Single value for all layers of all IP-Adapters
if isinstance(scale, scale_type):
scale = [scale for _ in range(num_ip_adapters)]
# List of per-layer scales for a single IP-Adapter
elif _is_valid_type(scale, List[scale_type]) and num_ip_adapters == 1:
scale = [scale] scale = [scale]
# Invalid scale type
elif not _is_valid_type(scale, List[Union[scale_type, List[scale_type]]]):
raise TypeError(f"Unexpected type {_get_detailed_type(scale)} for scale.")
scale_configs = scale if len(scale) != num_ip_adapters:
raise ValueError(f"Cannot assign {len(scale)} scales to {num_ip_adapters} IP-Adapters.")
key_id = 0 if any(len(s) != num_layers for s in scale if isinstance(s, list)):
for attn_name, attn_processor in transformer.attn_processors.items(): invalid_scale_sizes = {len(s) for s in scale if isinstance(s, list)} - {num_layers}
if isinstance(attn_processor, (FluxIPAdapterJointAttnProcessor2_0)): raise ValueError(
if len(scale_configs) != len(attn_processor.scale): f"Expected list of {num_layers} scales, got {', '.join(str(x) for x in invalid_scale_sizes)}."
raise ValueError( )
f"Cannot assign {len(scale_configs)} scale_configs to "
f"{len(attn_processor.scale)} IP-Adapter." # Scalars are transformed to lists with length num_layers
) scale_configs = [[s] * num_layers if isinstance(s, scale_type) else s for s in scale]
elif len(scale_configs) == 1:
scale_configs = scale_configs * len(attn_processor.scale) # Set scales. zip over scale_configs prevents going into single transformer layers
for i, scale_config in enumerate(scale_configs): for attn_processor, *scale in zip(self.transformer.attn_processors.values(), *scale_configs):
attn_processor.scale[i] = scale_config[key_id] attn_processor.scale = scale
key_id += 1
def unload_ip_adapter(self): def unload_ip_adapter(self):
""" """
......
...@@ -2780,9 +2780,8 @@ class FluxIPAdapterJointAttnProcessor2_0(torch.nn.Module): ...@@ -2780,9 +2780,8 @@ class FluxIPAdapterJointAttnProcessor2_0(torch.nn.Module):
# IP-adapter # IP-adapter
ip_query = hidden_states_query_proj ip_query = hidden_states_query_proj
ip_attn_output = None ip_attn_output = torch.zeros_like(hidden_states)
# for ip-adapter
# TODO: support for multiple adapters
for current_ip_hidden_states, scale, to_k_ip, to_v_ip in zip( for current_ip_hidden_states, scale, to_k_ip, to_v_ip in zip(
ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip
): ):
...@@ -2793,12 +2792,14 @@ class FluxIPAdapterJointAttnProcessor2_0(torch.nn.Module): ...@@ -2793,12 +2792,14 @@ class FluxIPAdapterJointAttnProcessor2_0(torch.nn.Module):
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim) # the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1 # TODO: add support for attn.scale when we move to Torch 2.1
ip_attn_output = F.scaled_dot_product_attention( current_ip_hidden_states = F.scaled_dot_product_attention(
ip_query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False ip_query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
) )
ip_attn_output = ip_attn_output.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) current_ip_hidden_states = current_ip_hidden_states.transpose(1, 2).reshape(
ip_attn_output = scale * ip_attn_output batch_size, -1, attn.heads * head_dim
ip_attn_output = ip_attn_output.to(ip_query.dtype) )
current_ip_hidden_states = current_ip_hidden_states.to(ip_query.dtype)
ip_attn_output += scale * current_ip_hidden_states
return hidden_states, encoder_hidden_states, ip_attn_output return hidden_states, encoder_hidden_states, ip_attn_output
else: else:
......
...@@ -2583,6 +2583,11 @@ class MultiIPAdapterImageProjection(nn.Module): ...@@ -2583,6 +2583,11 @@ class MultiIPAdapterImageProjection(nn.Module):
super().__init__() super().__init__()
self.image_projection_layers = nn.ModuleList(IPAdapterImageProjectionLayers) self.image_projection_layers = nn.ModuleList(IPAdapterImageProjectionLayers)
@property
def num_ip_adapters(self) -> int:
"""Number of IP-Adapters loaded."""
return len(self.image_projection_layers)
def forward(self, image_embeds: List[torch.Tensor]): def forward(self, image_embeds: List[torch.Tensor]):
projected_image_embeds = [] projected_image_embeds = []
......
...@@ -405,23 +405,28 @@ class FluxPipeline( ...@@ -405,23 +405,28 @@ class FluxPipeline(
if not isinstance(ip_adapter_image, list): if not isinstance(ip_adapter_image, list):
ip_adapter_image = [ip_adapter_image] ip_adapter_image = [ip_adapter_image]
if len(ip_adapter_image) != len(self.transformer.encoder_hid_proj.image_projection_layers): if len(ip_adapter_image) != self.transformer.encoder_hid_proj.num_ip_adapters:
raise ValueError( raise ValueError(
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.transformer.encoder_hid_proj.image_projection_layers)} IP Adapters." f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."
) )
for single_ip_adapter_image, image_proj_layer in zip( for single_ip_adapter_image in ip_adapter_image:
ip_adapter_image, self.transformer.encoder_hid_proj.image_projection_layers
):
single_image_embeds = self.encode_image(single_ip_adapter_image, device, 1) single_image_embeds = self.encode_image(single_ip_adapter_image, device, 1)
image_embeds.append(single_image_embeds[None, :]) image_embeds.append(single_image_embeds[None, :])
else: else:
if not isinstance(ip_adapter_image_embeds, list):
ip_adapter_image_embeds = [ip_adapter_image_embeds]
if len(ip_adapter_image_embeds) != self.transformer.encoder_hid_proj.num_ip_adapters:
raise ValueError(
f"`ip_adapter_image_embeds` must have same length as the number of IP Adapters. Got {len(ip_adapter_image_embeds)} image embeds and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."
)
for single_image_embeds in ip_adapter_image_embeds: for single_image_embeds in ip_adapter_image_embeds:
image_embeds.append(single_image_embeds) image_embeds.append(single_image_embeds)
ip_adapter_image_embeds = [] ip_adapter_image_embeds = []
for i, single_image_embeds in enumerate(image_embeds): for single_image_embeds in image_embeds:
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
single_image_embeds = single_image_embeds.to(device=device) single_image_embeds = single_image_embeds.to(device=device)
ip_adapter_image_embeds.append(single_image_embeds) ip_adapter_image_embeds.append(single_image_embeds)
...@@ -872,10 +877,13 @@ class FluxPipeline( ...@@ -872,10 +877,13 @@ class FluxPipeline(
negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None
): ):
negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
negative_ip_adapter_image = [negative_ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and ( elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and (
negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None
): ):
ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
ip_adapter_image = [ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
if self.joint_attention_kwargs is None: if self.joint_attention_kwargs is None:
self._joint_attention_kwargs = {} self._joint_attention_kwargs = {}
......
...@@ -17,7 +17,7 @@ import os ...@@ -17,7 +17,7 @@ import os
import re import re
import warnings import warnings
from pathlib import Path from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Type, Union, get_args, get_origin from typing import Any, Callable, Dict, List, Optional, Union
import requests import requests
import torch import torch
...@@ -1059,76 +1059,3 @@ def _maybe_raise_error_for_incorrect_transformers(config_dict): ...@@ -1059,76 +1059,3 @@ def _maybe_raise_error_for_incorrect_transformers(config_dict):
break break
if has_transformers_component and not is_transformers_version(">", "4.47.1"): if has_transformers_component and not is_transformers_version(">", "4.47.1"):
raise ValueError("Please upgrade your `transformers` installation to the latest version to use DDUF.") raise ValueError("Please upgrade your `transformers` installation to the latest version to use DDUF.")
def _is_valid_type(obj: Any, class_or_tuple: Union[Type, Tuple[Type, ...]]) -> bool:
"""
Checks if an object is an instance of any of the provided types. For collections, it checks if every element is of
the correct type as well.
"""
if not isinstance(class_or_tuple, tuple):
class_or_tuple = (class_or_tuple,)
# Unpack unions
unpacked_class_or_tuple = []
for t in class_or_tuple:
if get_origin(t) is Union:
unpacked_class_or_tuple.extend(get_args(t))
else:
unpacked_class_or_tuple.append(t)
class_or_tuple = tuple(unpacked_class_or_tuple)
if Any in class_or_tuple:
return True
obj_type = type(obj)
# Classes with obj's type
class_or_tuple = {t for t in class_or_tuple if isinstance(obj, get_origin(t) or t)}
# Singular types (e.g. int, ControlNet, ...)
# Untyped collections (e.g. List, but not List[int])
elem_class_or_tuple = {get_args(t) for t in class_or_tuple}
if () in elem_class_or_tuple:
return True
# Typed lists or sets
elif obj_type in (list, set):
return any(all(_is_valid_type(x, t) for x in obj) for t in elem_class_or_tuple)
# Typed tuples
elif obj_type is tuple:
return any(
# Tuples with any length and single type (e.g. Tuple[int, ...])
(len(t) == 2 and t[-1] is Ellipsis and all(_is_valid_type(x, t[0]) for x in obj))
or
# Tuples with fixed length and any types (e.g. Tuple[int, str])
(len(obj) == len(t) and all(_is_valid_type(x, tt) for x, tt in zip(obj, t)))
for t in elem_class_or_tuple
)
# Typed dicts
elif obj_type is dict:
return any(
all(_is_valid_type(k, kt) and _is_valid_type(v, vt) for k, v in obj.items())
for kt, vt in elem_class_or_tuple
)
else:
return False
def _get_detailed_type(obj: Any) -> Type:
"""
Gets a detailed type for an object, including nested types for collections.
"""
obj_type = type(obj)
if obj_type in (list, set):
obj_origin_type = List if obj_type is list else Set
elems_type = Union[tuple({_get_detailed_type(x) for x in obj})]
return obj_origin_type[elems_type]
elif obj_type is tuple:
return Tuple[tuple(_get_detailed_type(x) for x in obj)]
elif obj_type is dict:
keys_type = Union[tuple({_get_detailed_type(k) for k in obj.keys()})]
values_type = Union[tuple({_get_detailed_type(k) for k in obj.values()})]
return Dict[keys_type, values_type]
else:
return obj_type
...@@ -54,6 +54,8 @@ from ..utils import ( ...@@ -54,6 +54,8 @@ from ..utils import (
DEPRECATED_REVISION_ARGS, DEPRECATED_REVISION_ARGS,
BaseOutput, BaseOutput,
PushToHubMixin, PushToHubMixin,
_get_detailed_type,
_is_valid_type,
is_accelerate_available, is_accelerate_available,
is_accelerate_version, is_accelerate_version,
is_torch_npu_available, is_torch_npu_available,
...@@ -78,12 +80,10 @@ from .pipeline_loading_utils import ( ...@@ -78,12 +80,10 @@ from .pipeline_loading_utils import (
_fetch_class_library_tuple, _fetch_class_library_tuple,
_get_custom_components_and_folders, _get_custom_components_and_folders,
_get_custom_pipeline_class, _get_custom_pipeline_class,
_get_detailed_type,
_get_final_device_map, _get_final_device_map,
_get_ignore_patterns, _get_ignore_patterns,
_get_pipeline_class, _get_pipeline_class,
_identify_model_variants, _identify_model_variants,
_is_valid_type,
_maybe_raise_error_for_incorrect_transformers, _maybe_raise_error_for_incorrect_transformers,
_maybe_raise_warning_for_inpainting, _maybe_raise_warning_for_inpainting,
_resolve_custom_pipeline_and_cls, _resolve_custom_pipeline_and_cls,
......
...@@ -123,6 +123,7 @@ from .state_dict_utils import ( ...@@ -123,6 +123,7 @@ from .state_dict_utils import (
convert_state_dict_to_peft, convert_state_dict_to_peft,
convert_unet_state_dict_to_peft, convert_unet_state_dict_to_peft,
) )
from .typing_utils import _get_detailed_type, _is_valid_type
logger = get_logger(__name__) logger = get_logger(__name__)
......
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Typing utilities: Utilities related to type checking and validation
"""
from typing import Any, Dict, List, Set, Tuple, Type, Union, get_args, get_origin
def _is_valid_type(obj: Any, class_or_tuple: Union[Type, Tuple[Type, ...]]) -> bool:
"""
Checks if an object is an instance of any of the provided types. For collections, it checks if every element is of
the correct type as well.
"""
if not isinstance(class_or_tuple, tuple):
class_or_tuple = (class_or_tuple,)
# Unpack unions
unpacked_class_or_tuple = []
for t in class_or_tuple:
if get_origin(t) is Union:
unpacked_class_or_tuple.extend(get_args(t))
else:
unpacked_class_or_tuple.append(t)
class_or_tuple = tuple(unpacked_class_or_tuple)
if Any in class_or_tuple:
return True
obj_type = type(obj)
# Classes with obj's type
class_or_tuple = {t for t in class_or_tuple if isinstance(obj, get_origin(t) or t)}
# Singular types (e.g. int, ControlNet, ...)
# Untyped collections (e.g. List, but not List[int])
elem_class_or_tuple = {get_args(t) for t in class_or_tuple}
if () in elem_class_or_tuple:
return True
# Typed lists or sets
elif obj_type in (list, set):
return any(all(_is_valid_type(x, t) for x in obj) for t in elem_class_or_tuple)
# Typed tuples
elif obj_type is tuple:
return any(
# Tuples with any length and single type (e.g. Tuple[int, ...])
(len(t) == 2 and t[-1] is Ellipsis and all(_is_valid_type(x, t[0]) for x in obj))
or
# Tuples with fixed length and any types (e.g. Tuple[int, str])
(len(obj) == len(t) and all(_is_valid_type(x, tt) for x, tt in zip(obj, t)))
for t in elem_class_or_tuple
)
# Typed dicts
elif obj_type is dict:
return any(
all(_is_valid_type(k, kt) and _is_valid_type(v, vt) for k, v in obj.items())
for kt, vt in elem_class_or_tuple
)
else:
return False
def _get_detailed_type(obj: Any) -> Type:
"""
Gets a detailed type for an object, including nested types for collections.
"""
obj_type = type(obj)
if obj_type in (list, set):
obj_origin_type = List if obj_type is list else Set
elems_type = Union[tuple({_get_detailed_type(x) for x in obj})]
return obj_origin_type[elems_type]
elif obj_type is tuple:
return Tuple[tuple(_get_detailed_type(x) for x in obj)]
elif obj_type is dict:
keys_type = Union[tuple({_get_detailed_type(k) for k in obj.keys()})]
values_type = Union[tuple({_get_detailed_type(k) for k in obj.values()})]
return Dict[keys_type, values_type]
else:
return obj_type
...@@ -527,7 +527,9 @@ class FluxIPAdapterTesterMixin: ...@@ -527,7 +527,9 @@ class FluxIPAdapterTesterMixin:
The following scenarios are tested: The following scenarios are tested:
- Single IP-Adapter with scale=0 should produce same output as no IP-Adapter. - Single IP-Adapter with scale=0 should produce same output as no IP-Adapter.
- Multi IP-Adapter with scale=0 should produce same output as no IP-Adapter.
- Single IP-Adapter with scale!=0 should produce different output compared to no IP-Adapter. - Single IP-Adapter with scale!=0 should produce different output compared to no IP-Adapter.
- Multi IP-Adapter with scale!=0 should produce different output compared to no IP-Adapter.
""" """
# Raising the tolerance for this test when it's run on a CPU because we # Raising the tolerance for this test when it's run on a CPU because we
# compare against static slices and that can be shaky (with a VVVV low probability). # compare against static slices and that can be shaky (with a VVVV low probability).
...@@ -545,6 +547,7 @@ class FluxIPAdapterTesterMixin: ...@@ -545,6 +547,7 @@ class FluxIPAdapterTesterMixin:
else: else:
output_without_adapter = expected_pipe_slice output_without_adapter = expected_pipe_slice
# 1. Single IP-Adapter test cases
adapter_state_dict = create_flux_ip_adapter_state_dict(pipe.transformer) adapter_state_dict = create_flux_ip_adapter_state_dict(pipe.transformer)
pipe.transformer._load_ip_adapter_weights(adapter_state_dict) pipe.transformer._load_ip_adapter_weights(adapter_state_dict)
...@@ -578,6 +581,44 @@ class FluxIPAdapterTesterMixin: ...@@ -578,6 +581,44 @@ class FluxIPAdapterTesterMixin:
max_diff_with_adapter_scale, 1e-2, "Output with ip-adapter must be different from normal inference" max_diff_with_adapter_scale, 1e-2, "Output with ip-adapter must be different from normal inference"
) )
# 2. Multi IP-Adapter test cases
adapter_state_dict_1 = create_flux_ip_adapter_state_dict(pipe.transformer)
adapter_state_dict_2 = create_flux_ip_adapter_state_dict(pipe.transformer)
pipe.transformer._load_ip_adapter_weights([adapter_state_dict_1, adapter_state_dict_2])
# forward pass with multi ip adapter, but scale=0 which should have no effect
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(image_embed_dim)] * 2
inputs["negative_ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(image_embed_dim)] * 2
pipe.set_ip_adapter_scale([0.0, 0.0])
output_without_multi_adapter_scale = pipe(**inputs)[0]
if expected_pipe_slice is not None:
output_without_multi_adapter_scale = output_without_multi_adapter_scale[0, -3:, -3:, -1].flatten()
# forward pass with multi ip adapter, but with scale of adapter weights
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(image_embed_dim)] * 2
inputs["negative_ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(image_embed_dim)] * 2
pipe.set_ip_adapter_scale([42.0, 42.0])
output_with_multi_adapter_scale = pipe(**inputs)[0]
if expected_pipe_slice is not None:
output_with_multi_adapter_scale = output_with_multi_adapter_scale[0, -3:, -3:, -1].flatten()
max_diff_without_multi_adapter_scale = np.abs(
output_without_multi_adapter_scale - output_without_adapter
).max()
max_diff_with_multi_adapter_scale = np.abs(output_with_multi_adapter_scale - output_without_adapter).max()
self.assertLess(
max_diff_without_multi_adapter_scale,
expected_max_diff,
"Output without multi-ip-adapter must be same as normal inference",
)
self.assertGreater(
max_diff_with_multi_adapter_scale,
1e-2,
"Output with multi-ip-adapter scale must be different from normal inference",
)
class PipelineLatentTesterMixin: class PipelineLatentTesterMixin:
""" """
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment