Unverified Commit 13994b2d authored by Anton Lozhkov's avatar Anton Lozhkov Committed by GitHub
Browse files

RePaint fast tests and API conforming (#1701)

* add fast tests

* better tests and fp16

* batch fixes

* Reuse preprocessing

* quickfix
parent ea90bf2b
......@@ -13,33 +13,61 @@
# limitations under the License.
from typing import Optional, Tuple, Union
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
import PIL
from tqdm.auto import tqdm
from ...models import UNet2DModel
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from ...schedulers import RePaintScheduler
from ...utils import PIL_INTERPOLATION, deprecate, logging
def _preprocess_image(image: PIL.Image.Image):
image = np.array(image.convert("RGB"))
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.preprocess
def _preprocess_image(image: Union[List, PIL.Image.Image, torch.Tensor]):
if isinstance(image, torch.Tensor):
return image
elif isinstance(image, PIL.Image.Image):
image = [image]
if isinstance(image[0], PIL.Image.Image):
w, h = image[0].size
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
image = np.concatenate(image, axis=0)
image = np.array(image).astype(np.float32) / 255.0
image = image.transpose(0, 3, 1, 2)
image = 2.0 * image - 1.0
image = torch.from_numpy(image)
elif isinstance(image[0], torch.Tensor):
image = torch.cat(image, dim=0)
return image
def _preprocess_mask(mask: PIL.Image.Image):
mask = np.array(mask.convert("L"))
mask = mask.astype(np.float32) / 255.0
mask = mask[None, None]
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask)
def _preprocess_mask(mask: Union[List, PIL.Image.Image, torch.Tensor]):
if isinstance(mask, torch.Tensor):
return mask
elif isinstance(mask, PIL.Image.Image):
mask = [mask]
if isinstance(mask[0], PIL.Image.Image):
w, h = mask[0].size
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
mask = [np.array(m.convert("L").resize((w, h), resample=PIL_INTERPOLATION["nearest"]))[None, :] for m in mask]
mask = np.concatenate(mask, axis=0)
mask = mask.astype(np.float32) / 255.0
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask)
elif isinstance(mask[0], torch.Tensor):
mask = torch.cat(mask, dim=0)
return mask
......@@ -54,8 +82,8 @@ class RePaintPipeline(DiffusionPipeline):
@torch.no_grad()
def __call__(
self,
original_image: Union[torch.FloatTensor, PIL.Image.Image],
mask_image: Union[torch.FloatTensor, PIL.Image.Image],
image: Union[torch.Tensor, PIL.Image.Image],
mask_image: Union[torch.Tensor, PIL.Image.Image],
num_inference_steps: int = 250,
eta: float = 0.0,
jump_length: int = 10,
......@@ -63,10 +91,11 @@ class RePaintPipeline(DiffusionPipeline):
generator: Optional[torch.Generator] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
**kwargs,
) -> Union[ImagePipelineOutput, Tuple]:
r"""
Args:
original_image (`torch.FloatTensor` or `PIL.Image.Image`):
image (`torch.FloatTensor` or `PIL.Image.Image`):
The original image to inpaint on.
mask_image (`torch.FloatTensor` or `PIL.Image.Image`):
The mask_image where 0.0 values define which part of the original image to inpaint (change).
......@@ -97,12 +126,14 @@ class RePaintPipeline(DiffusionPipeline):
generated images.
"""
if not isinstance(original_image, torch.FloatTensor):
original_image = _preprocess_image(original_image)
original_image = original_image.to(self.device)
if not isinstance(mask_image, torch.FloatTensor):
mask_image = _preprocess_mask(mask_image)
mask_image = mask_image.to(self.device)
message = "Please use `image` instead of `original_image`."
original_image = deprecate("original_image", "0.15.0", message, take_from=kwargs)
original_image = original_image or image
original_image = _preprocess_image(original_image)
original_image = original_image.to(device=self.device, dtype=self.unet.dtype)
mask_image = _preprocess_mask(mask_image)
mask_image = mask_image.to(device=self.device, dtype=self.unet.dtype)
# sample gaussian noise to begin the loop
image = torch.randn(
......@@ -110,14 +141,14 @@ class RePaintPipeline(DiffusionPipeline):
generator=generator,
device=self.device,
)
image = image.to(self.device)
image = image.to(device=self.device, dtype=self.unet.dtype)
# set step values
self.scheduler.set_timesteps(num_inference_steps, jump_length, jump_n_sample, self.device)
self.scheduler.eta = eta
t_last = self.scheduler.timesteps[0] + 1
for i, t in enumerate(tqdm(self.scheduler.timesteps)):
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
if t < t_last:
# predict the noise residual
model_output = self.unet(image, t).sample
......
......@@ -270,9 +270,13 @@ class RePaintScheduler(SchedulerMixin, ConfigMixin):
# been observed.
# 5. Add noise
noise = torch.randn(
model_output.shape, dtype=model_output.dtype, generator=generator, device=model_output.device
)
device = model_output.device
if device.type == "mps":
# randn does not work reproducibly on mps
noise = torch.randn(model_output.shape, dtype=model_output.dtype, generator=generator)
noise = noise.to(device)
else:
noise = torch.randn(model_output.shape, generator=generator, device=device, dtype=model_output.dtype)
std_dev_t = self.eta * self._get_variance(timestep) ** 0.5
variance = 0
......@@ -305,7 +309,12 @@ class RePaintScheduler(SchedulerMixin, ConfigMixin):
for i in range(n):
beta = self.betas[timestep + i]
noise = torch.randn(sample.shape, generator=generator, device=sample.device)
if sample.device.type == "mps":
# randn does not work reproducibly on mps
noise = torch.randn(sample.shape, dtype=sample.dtype, generator=generator)
noise = noise.to(sample.device)
else:
noise = torch.randn(sample.shape, generator=generator, device=sample.device, dtype=sample.dtype)
# 10. Algorithm 1 Line 10 https://arxiv.org/pdf/2201.09865.pdf
sample = (1 - beta) ** 0.5 * sample + beta**0.5 * noise
......
......@@ -21,10 +21,68 @@ import torch
from diffusers import RePaintPipeline, RePaintScheduler, UNet2DModel
from diffusers.utils.testing_utils import load_image, load_numpy, require_torch_gpu, slow, torch_device
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class RepaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = RePaintPipeline
test_cpu_offload = False
def get_dummy_components(self):
torch.manual_seed(0)
torch.manual_seed(0)
unet = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
scheduler = RePaintScheduler()
components = {"unet": unet, "scheduler": scheduler}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
image = np.random.RandomState(seed).standard_normal((1, 3, 32, 32))
image = torch.from_numpy(image).to(device=device, dtype=torch.float32)
mask = (image > 0).to(device=device, dtype=torch.float32)
inputs = {
"image": image,
"mask_image": mask,
"generator": generator,
"num_inference_steps": 5,
"eta": 0.0,
"jump_length": 2,
"jump_n_sample": 2,
"output_type": "numpy",
}
return inputs
def test_repaint(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = RePaintPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([1.0000, 0.5426, 0.5497, 0.2200, 1.0000, 1.0000, 0.5623, 1.0000, 0.6274])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
@slow
@require_torch_gpu
class RepaintPipelineIntegrationTests(unittest.TestCase):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment