Unverified Commit 1051ca81 authored by YiYi Xu's avatar YiYi Xu Committed by GitHub
Browse files

Stable Diffusion Latent Upscaler (#2059)



* Modify UNet2DConditionModel

- allow skipping mid_block

- adding a norm_group_size argument so that we can set the `num_groups` for group norm using `num_channels//norm_group_size`

- allow user to set dimension for the timestep embedding (`time_embed_dim`)

- the kernel_size for `conv_in` and `conv_out` is now configurable

- add random fourier feature layer (`GaussianFourierProjection`) for `time_proj`

- allow user to add the time and class embeddings before passing through the projection layer together - `time_embedding(t_emb + class_label))`

- added 2 arguments `attn1_types` and `attn2_types`

  * currently we have argument `only_cross_attention`: when it's set to `True`, we will have a to the
`BasicTransformerBlock` block with 2 cross-attention , otherwise we
get a self-attention followed by a cross-attention; in k-upscaler, we need to have blocks that include just one cross-attention, or self-attention -> cross-attention;
so I added `attn1_types` and `attn2_types` to the unet's argument list to allow user specify the attention types for the 2 positions in each block;  note that I stil kept
the `only_cross_attention` argument for unet for easy configuration, but it will be converted to `attn1_type` and `attn2_type` when passing down to the down blocks

- the position of downsample layer and upsample layer is now configurable

- in k-upscaler unet, there is only one skip connection per each up/down block (instead of each layer in stable diffusion unet), added `skip_freq = "block"` to support
this use case

- if user passes attention_mask to unet, it will prepare the mask and pass a flag to cross attention processer to skip the `prepare_attention_mask` step
inside cross attention block

add up/down blocks for k-upscaler

modify CrossAttention class

- make the `dropout` layer in `to_out` optional

- `use_conv_proj` - use conv instead of linear for all projection layers (i.e. `to_q`, `to_k`, `to_v`, `to_out`) whenever possible. note that when it's used to do cross
attention, to_k, to_v has to be linear because the `encoder_hidden_states` is not 2d

- `cross_attention_norm` - add an optional layernorm on encoder_hidden_states

- `attention_dropout`: add an optional dropout on attention score

adapt BasicTransformerBlock

- add an ada groupnorm layer  to conditioning attention input with timestep embedding

- allow skipping the FeedForward layer in between the attentions

- replaced the only_cross_attention argument with attn1_type and attn2_type for more flexible configuration

update timestep embedding: add new act_fn  gelu and an optional act_2

modified ResnetBlock2D

- refactored with AdaGroupNorm class (the timestep scale shift normalization)

- add `mid_channel` argument - allow the first conv to have a different output dimension from the second conv

- add option to use input AdaGroupNorm on the input instead of groupnorm

- add options to add a dropout layer after each conv

- allow user to set the bias in conv_shortcut (needed for k-upscaler)

- add gelu

adding conversion script for k-upscaler unet

add pipeline

* fix attention mask

* fix a typo

* fix a bug

* make sure model can be used with GPU

* make pipeline work with fp16

* fix an error in BasicTransfomerBlock

* make style

* fix typo

* some more fixes

* uP

* up

* correct more

* some clean-up

* clean time proj

* up

* uP

* more changes

* remove the upcast_attention=True from unet config

* remove attn1_types, attn2_types etc

* fix

* revert incorrect changes up/down samplers

* make style

* remove outdated files

* Apply suggestions from code review

* attention refactor

* refactor cross attention

* Apply suggestions from code review

* update

* up

* update

* Apply suggestions from code review

* finish

* Update src/diffusers/models/cross_attention.py

* more fixes

* up

* up

* up

* finish

* more corrections of conversion state

* act_2 -> act_2_fn

* remove dropout_after_conv from ResnetBlock2D

* make style

* simplify KAttentionBlock

* add fast test for latent upscaler pipeline

* add slow test

* slow test fp16

* make style

* add doc string for pipeline_stable_diffusion_latent_upscale

* add api doc page for latent upscaler pipeline

* deprecate attention mask

* clean up embeddings

* simplify resnet

* up

* clean up resnet

* up

* correct more

* up

* up

* improve a bit more

* correct more

* more clean-ups

* Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>

* Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>

* add docstrings for new unet config

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>

* # Copied from

* encode the image if not latent

* remove force casting vae to fp32

* fix

* add comments about preconditioning parameters from k-diffusion paper

* attn1_type, attn2_type -> add_self_attention

* clean up get_down_block and get_up_block

* fix

* fixed a typo(?) in ada group norm

* update slice attention processer for cross attention

* update slice

* fix fast test

* update the checkpoint

* finish tests

* fix-copies

* fix-copy for modeling_text_unet.py

* make style

* make style

* fix f-string

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>

* fix import

* correct changes

* fix resnet

* make fix-copies

* correct euler scheduler

* add missing #copied from for preprocess

* revert

* fix

* fix copies

* Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>

* Update src/diffusers/models/cross_attention.py
Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>

* clean up conversion script

* KDownsample2d,KUpsample2d -> KDownsample2D,KUpsample2D

* more

* Update src/diffusers/models/unet_2d_condition.py
Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>

* remove prepare_extra_step_kwargs

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>

* fix a typo in timestep embedding

* remove num_image_per_prompt

* fix fasttest

* make style + fix-copies

* fix

* fix xformer test

* fix style

* doc string

* make style

* fix-copies

* docstring for time_embedding_norm

* make style

* final finishes

* make fix-copies

* fix tests

---------
Co-authored-by: default avataryiyixuxu <yixu@yis-macbook-pro.lan>
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
parent 3b66cc0f
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
StableDiffusionLatentUpscalePipeline,
StableDiffusionPipeline,
UNet2DConditionModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class StableDiffusionLatentUpscalePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = StableDiffusionLatentUpscalePipeline
test_cpu_offload = True
@property
def dummy_image(self):
batch_size = 1
num_channels = 4
sizes = (16, 16)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
def get_dummy_components(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
act_fn="gelu",
attention_head_dim=8,
norm_num_groups=None,
block_out_channels=[32, 32, 64, 64],
time_cond_proj_dim=160,
conv_in_kernel=1,
conv_out_kernel=1,
cross_attention_dim=32,
down_block_types=(
"KDownBlock2D",
"KCrossAttnDownBlock2D",
"KCrossAttnDownBlock2D",
"KCrossAttnDownBlock2D",
),
in_channels=8,
mid_block_type=None,
only_cross_attention=False,
out_channels=5,
resnet_time_scale_shift="scale_shift",
time_embedding_type="fourier",
timestep_post_act="gelu",
up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D"),
)
vae = AutoencoderKL(
block_out_channels=[32, 32, 64, 64],
in_channels=3,
out_channels=3,
down_block_types=[
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
scheduler = EulerDiscreteScheduler(prediction_type="original_sample")
text_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
hidden_act="quick_gelu",
projection_dim=512,
)
text_encoder = CLIPTextModel(text_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": model.eval(),
"vae": vae.eval(),
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": self.dummy_image.cpu(),
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def test_inference(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
self.assertEqual(image.shape, (1, 256, 256, 3))
expected_slice = np.array(
[0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055]
)
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(max_diff, 1e-3)
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(relax_max_difference=False)
@require_torch_gpu
@slow
class StableDiffusionLatentUpscalePipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_latent_upscaler_fp16(self):
generator = torch.manual_seed(33)
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
pipe.to("cuda")
upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(
"stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16
)
upscaler.to("cuda")
prompt = "a photo of an astronaut high resolution, unreal engine, ultra realistic"
low_res_latents = pipe(prompt, generator=generator, output_type="latent").images
image = upscaler(
prompt=prompt,
image=low_res_latents,
num_inference_steps=20,
guidance_scale=0,
generator=generator,
output_type="np",
).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy"
)
assert np.abs((expected_image - image).max()) < 1e-3
def test_latent_upscaler_fp16_image(self):
generator = torch.manual_seed(33)
upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(
"stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16
)
upscaler.to("cuda")
prompt = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas"
low_res_img = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png"
)
image = upscaler(
prompt=prompt,
image=low_res_img,
num_inference_steps=20,
guidance_scale=0,
generator=generator,
output_type="np",
).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy"
)
assert np.abs((expected_image - image).max()) < 1e-3
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment