Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
0eac7bd6
Commit
0eac7bd6
authored
Jul 01, 2022
by
Patrick von Platen
Browse files
small fix
parent
1e7e23a9
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
13 additions
and
15 deletions
+13
-15
src/diffusers/models/resnet.py
src/diffusers/models/resnet.py
+10
-10
src/diffusers/models/unet_sde_score_estimation.py
src/diffusers/models/unet_sde_score_estimation.py
+3
-5
No files found.
src/diffusers/models/resnet.py
View file @
0eac7bd6
...
...
@@ -237,12 +237,12 @@ class ResnetBlock(nn.Module):
elif
non_linearity
==
"silu"
:
self
.
nonlinearity
=
nn
.
SiLU
()
# if up:
# self.h_upd = Upsample(in_channels, use_conv=False, dims=2)
# self.x_upd = Upsample(in_channels, use_conv=False, dims=2)
# elif down:
# self.h_upd = Downsample(in_channels, use_conv=False, dims=2, padding=1, name="op")
# self.x_upd = Downsample(in_channels, use_conv=False, dims=2, padding=1, name="op")
# if up:
# self.h_upd = Upsample(in_channels, use_conv=False, dims=2)
# self.x_upd = Upsample(in_channels, use_conv=False, dims=2)
# elif down:
# self.h_upd = Downsample(in_channels, use_conv=False, dims=2, padding=1, name="op")
# self.x_upd = Downsample(in_channels, use_conv=False, dims=2, padding=1, name="op")
self
.
upsample
=
self
.
downsample
=
None
if
self
.
up
and
kernel
==
"fir"
:
...
...
@@ -318,9 +318,9 @@ class ResnetBlock(nn.Module):
num_groups
=
min
(
in_ch
//
4
,
32
)
num_groups_out
=
min
(
out_ch
//
4
,
32
)
temb_dim
=
temb_channels
# output_scale_factor = np.sqrt(2.0)
# non_linearity = "silu"
# use_nin_shortcut = in_channels != out_channels or use_nin_shortcut = True
# output_scale_factor = np.sqrt(2.0)
# non_linearity = "silu"
# use_nin_shortcut = in_channels != out_channels or use_nin_shortcut = True
self
.
GroupNorm_0
=
nn
.
GroupNorm
(
num_groups
=
num_groups
,
num_channels
=
in_ch
,
eps
=
eps
)
self
.
up
=
up
...
...
@@ -338,7 +338,7 @@ class ResnetBlock(nn.Module):
# 1x1 convolution with DDPM initialization.
self
.
Conv_2
=
conv2d
(
in_ch
,
out_ch
,
kernel_size
=
1
,
padding
=
0
)
# self.skip_rescale = skip_rescale
# self.skip_rescale = skip_rescale
self
.
in_ch
=
in_ch
self
.
out_ch
=
out_ch
...
...
src/diffusers/models/unet_sde_score_estimation.py
View file @
0eac7bd6
...
...
@@ -27,8 +27,7 @@ from ..configuration_utils import ConfigMixin
from
..modeling_utils
import
ModelMixin
from
.attention
import
AttentionBlock
from
.embeddings
import
GaussianFourierProjection
,
get_timestep_embedding
from
.resnet
import
downsample_2d
,
upfirdn2d
,
upsample_2d
,
Downsample
,
Upsample
from
.resnet
import
ResnetBlock
from
.resnet
import
Downsample
,
ResnetBlock
,
Upsample
,
downsample_2d
,
upfirdn2d
,
upsample_2d
def
_setup_kernel
(
k
):
...
...
@@ -277,8 +276,6 @@ class NCSNpp(ModelMixin, ConfigMixin):
skip_rescale
=
skip_rescale
,
continuous
=
continuous
,
)
self
.
act
=
act
=
nn
.
SiLU
()
self
.
nf
=
nf
self
.
num_res_blocks
=
num_res_blocks
self
.
attn_resolutions
=
attn_resolutions
...
...
@@ -421,9 +418,10 @@ class NCSNpp(ModelMixin, ConfigMixin):
for
i_level
in
reversed
(
range
(
self
.
num_resolutions
)):
for
i_block
in
range
(
num_res_blocks
+
1
):
out_ch
=
nf
*
ch_mult
[
i_level
]
in_ch
=
in_ch
+
hs_c
.
pop
()
modules
.
append
(
ResnetBlock
(
in_channels
=
in_ch
+
hs_c
.
pop
()
,
in_channels
=
in_ch
,
out_channels
=
out_ch
,
temb_channels
=
4
*
nf
,
output_scale_factor
=
np
.
sqrt
(
2.0
),
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment