"docs/vscode:/vscode.git/clone" did not exist on "aa4cc0adbce5f6277a862f5cedacd1c4555bb66e"
Unverified Commit 069186fa authored by Dimitri Barbot's avatar Dimitri Barbot Committed by GitHub
Browse files

Add sdxl controlnet reference community pipeline (#9893)



* Add reference_attn & reference_adain support for sdxl with other controlnet

* Update README.md

* Update README.md by replacing human example with a cat one

Replace human example with a cat one

* Replace default human example with a cat one

* Use example images from huggingface documentation-images repository

---------
Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
parent 69c83d6e
......@@ -2684,6 +2684,88 @@ Output Image
`reference_attn=True, reference_adain=True, num_inference_steps=20`
![output_image](https://github.com/huggingface/diffusers/assets/34944964/9b2f1aca-886f-49c3-89ec-d2031c8e3670)
### Stable Diffusion XL ControlNet Reference
This pipeline uses the Reference Control and with ControlNet. Refer to the [Stable Diffusion ControlNet Reference](https://github.com/huggingface/diffusers/blob/main/examples/community/README.md#stable-diffusion-controlnet-reference) and [Stable Diffusion XL Reference](https://github.com/huggingface/diffusers/blob/main/examples/community/README.md#stable-diffusion-xl-reference) sections for more information.
```py
from diffusers import ControlNetModel, AutoencoderKL
from diffusers.schedulers import UniPCMultistepScheduler
from diffusers.utils import load_image
import numpy as np
import torch
import cv2
from PIL import Image
from .stable_diffusion_xl_controlnet_reference import StableDiffusionXLControlNetReferencePipeline
# download an image
canny_image = load_image(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_input_cat.jpg"
)
ref_image = load_image(
"https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"
)
# initialize the models and pipeline
controlnet_conditioning_scale = 0.5 # recommended for good generalization
controlnet = ControlNetModel.from_pretrained(
"diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLControlNetReferencePipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
).to("cuda:0")
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
# get canny image
image = np.array(canny_image)
image = cv2.Canny(image, 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)
# generate image
image = pipe(
prompt="a cat",
num_inference_steps=20,
controlnet_conditioning_scale=controlnet_conditioning_scale,
image=canny_image,
ref_image=ref_image,
reference_attn=False,
reference_adain=True,
style_fidelity=1.0,
generator=torch.Generator("cuda").manual_seed(42)
).images[0]
```
Canny ControlNet Image
![canny_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_input_cat.jpg)
Reference Image
![ref_image](https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png)
Output Image
`prompt: a cat`
`reference_attn=True, reference_adain=True, num_inference_steps=20, style_fidelity=1.0`
![Output_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_attn_adain_canny_cat.png)
`reference_attn=False, reference_adain=True, num_inference_steps=20, style_fidelity=1.0`
![Output_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_adain_canny_cat.png)
`reference_attn=True, reference_adain=False, num_inference_steps=20, style_fidelity=1.0`
![Output_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_attn_canny_cat.png)
### Stable diffusion fabric pipeline
FABRIC approach applicable to a wide range of popular diffusion models, which exploits
......
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment