"docs/tools/git@developer.sourcefind.cn:OpenDAS/ollama.git" did not exist on "9f7822851c1f080d7d2a1dbe0e4d51233e5a28bc"
Unverified Commit 012d08b1 authored by jiqing-feng's avatar jiqing-feng Committed by GitHub
Browse files

Enable dreambooth lora finetune example on other devices (#10602)



* enable dreambooth_lora on other devices
Signed-off-by: default avatarjiqing-feng <jiqing.feng@intel.com>

* enable xpu
Signed-off-by: default avatarjiqing-feng <jiqing.feng@intel.com>

* check cuda device before empty cache
Signed-off-by: default avatarjiqing-feng <jiqing.feng@intel.com>

* fix comment
Signed-off-by: default avatarjiqing-feng <jiqing.feng@intel.com>

* import free_memory
Signed-off-by: default avatarjiqing-feng <jiqing.feng@intel.com>

---------
Signed-off-by: default avatarjiqing-feng <jiqing.feng@intel.com>
parent 4ace7d04
......@@ -54,7 +54,11 @@ from diffusers import (
)
from diffusers.loaders import StableDiffusionLoraLoaderMixin
from diffusers.optimization import get_scheduler
from diffusers.training_utils import _set_state_dict_into_text_encoder, cast_training_params
from diffusers.training_utils import (
_set_state_dict_into_text_encoder,
cast_training_params,
free_memory,
)
from diffusers.utils import (
check_min_version,
convert_state_dict_to_diffusers,
......@@ -151,14 +155,14 @@ def log_validation(
if args.validation_images is None:
images = []
for _ in range(args.num_validation_images):
with torch.cuda.amp.autocast():
with torch.amp.autocast(accelerator.device.type):
image = pipeline(**pipeline_args, generator=generator).images[0]
images.append(image)
else:
images = []
for image in args.validation_images:
image = Image.open(image)
with torch.cuda.amp.autocast():
with torch.amp.autocast(accelerator.device.type):
image = pipeline(**pipeline_args, image=image, generator=generator).images[0]
images.append(image)
......@@ -177,7 +181,7 @@ def log_validation(
)
del pipeline
torch.cuda.empty_cache()
free_memory()
return images
......@@ -793,7 +797,7 @@ def main(args):
cur_class_images = len(list(class_images_dir.iterdir()))
if cur_class_images < args.num_class_images:
torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
torch_dtype = torch.float16 if accelerator.device.type in ("cuda", "xpu") else torch.float32
if args.prior_generation_precision == "fp32":
torch_dtype = torch.float32
elif args.prior_generation_precision == "fp16":
......@@ -829,8 +833,7 @@ def main(args):
image.save(image_filename)
del pipeline
if torch.cuda.is_available():
torch.cuda.empty_cache()
free_memory()
# Handle the repository creation
if accelerator.is_main_process:
......@@ -1085,7 +1088,7 @@ def main(args):
tokenizer = None
gc.collect()
torch.cuda.empty_cache()
free_memory()
else:
pre_computed_encoder_hidden_states = None
validation_prompt_encoder_hidden_states = None
......
......@@ -299,6 +299,8 @@ def free_memory():
torch.mps.empty_cache()
elif is_torch_npu_available():
torch_npu.npu.empty_cache()
elif hasattr(torch, "xpu") and torch.xpu.is_available():
torch.xpu.empty_cache()
# Adapted from torch-ema https://github.com/fadel/pytorch_ema/blob/master/torch_ema/ema.py#L14
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment