deepfloyd_if.md 18.1 KB
Newer Older
1
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

13
# DeepFloyd IF
Patrick von Platen's avatar
Patrick von Platen committed
14
15
16

## Overview

17
18
DeepFloyd IF is a novel state-of-the-art open-source text-to-image model with a high degree of photorealism and language understanding.
The model is a modular composed of a frozen text encoder and three cascaded pixel diffusion modules:
Patrick von Platen's avatar
Patrick von Platen committed
19
- Stage 1: a base model that generates 64x64 px image based on text prompt,
20
- Stage 2: a 64x64 px => 256x256 px super-resolution model, and
Patrick von Platen's avatar
Patrick von Platen committed
21
- Stage 3: a 256x256 px => 1024x1024 px super-resolution model
22
23
24
Stage 1 and Stage 2 utilize a frozen text encoder based on the T5 transformer to extract text embeddings, which are then fed into a UNet architecture enhanced with cross-attention and attention pooling.
Stage 3 is [Stability AI's x4 Upscaling model](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler).
The result is a highly efficient model that outperforms current state-of-the-art models, achieving a zero-shot FID score of 6.66 on the COCO dataset.
Patrick von Platen's avatar
Patrick von Platen committed
25
26
27
28
29
Our work underscores the potential of larger UNet architectures in the first stage of cascaded diffusion models and depicts a promising future for text-to-image synthesis.

## Usage

Before you can use IF, you need to accept its usage conditions. To do so:
30
1. Make sure to have a [Hugging Face account](https://huggingface.co/join) and be logged in.
apolinário's avatar
apolinário committed
31
2. Accept the license on the model card of [DeepFloyd/IF-I-XL-v1.0](https://huggingface.co/DeepFloyd/IF-I-XL-v1.0). Accepting the license on the stage I model card will auto accept for the other IF models.
32
3. Make sure to login locally. Install `huggingface_hub`:
Patrick von Platen's avatar
Patrick von Platen committed
33
34
35
36
```sh
pip install huggingface_hub --upgrade
```

37
run the login function in a Python shell:
Patrick von Platen's avatar
Patrick von Platen committed
38
39
40
41
42
43
44
45
46
47
48
49

```py
from huggingface_hub import login

login()
```

and enter your [Hugging Face Hub access token](https://huggingface.co/docs/hub/security-tokens#what-are-user-access-tokens).

Next we install `diffusers` and dependencies:

```sh
50
pip install -q diffusers accelerate transformers
Patrick von Platen's avatar
Patrick von Platen committed
51
52
53
54
55
56
57
58
59
60
61
62
63
```

The following sections give more in-detail examples of how to use IF. Specifically:

- [Text-to-Image Generation](#text-to-image-generation)
- [Image-to-Image Generation](#text-guided-image-to-image-generation)
- [Inpainting](#text-guided-inpainting-generation)
- [Reusing model weights](#converting-between-different-pipelines)
- [Speed optimization](#optimizing-for-speed)
- [Memory optimization](#optimizing-for-memory)

**Available checkpoints**
- *Stage-1*
apolinário's avatar
apolinário committed
64
  - [DeepFloyd/IF-I-XL-v1.0](https://huggingface.co/DeepFloyd/IF-I-XL-v1.0)
Patrick von Platen's avatar
Patrick von Platen committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
  - [DeepFloyd/IF-I-L-v1.0](https://huggingface.co/DeepFloyd/IF-I-L-v1.0)
  - [DeepFloyd/IF-I-M-v1.0](https://huggingface.co/DeepFloyd/IF-I-M-v1.0)

- *Stage-2*
  - [DeepFloyd/IF-II-L-v1.0](https://huggingface.co/DeepFloyd/IF-II-L-v1.0)
  - [DeepFloyd/IF-II-M-v1.0](https://huggingface.co/DeepFloyd/IF-II-M-v1.0)

- *Stage-3*
  - [stabilityai/stable-diffusion-x4-upscaler](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler)


**Google Colab**
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/deepfloyd_if_free_tier_google_colab.ipynb)

### Text-to-Image Generation

81
By default diffusers makes use of [model cpu offloading](../../optimization/memory#model-offloading) to run the whole IF pipeline with as little as 14 GB of VRAM.
Patrick von Platen's avatar
Patrick von Platen committed
82
83
84

```python
from diffusers import DiffusionPipeline
85
from diffusers.utils import pt_to_pil, make_image_grid
Patrick von Platen's avatar
Patrick von Platen committed
86
87
88
import torch

# stage 1
apolinário's avatar
apolinário committed
89
stage_1 = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
Patrick von Platen's avatar
Patrick von Platen committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
stage_1.enable_model_cpu_offload()

# stage 2
stage_2 = DiffusionPipeline.from_pretrained(
    "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16
)
stage_2.enable_model_cpu_offload()

# stage 3
safety_modules = {
    "feature_extractor": stage_1.feature_extractor,
    "safety_checker": stage_1.safety_checker,
    "watermarker": stage_1.watermarker,
}
stage_3 = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-x4-upscaler", **safety_modules, torch_dtype=torch.float16
)
stage_3.enable_model_cpu_offload()

prompt = 'a photo of a kangaroo wearing an orange hoodie and blue sunglasses standing in front of the eiffel tower holding a sign that says "very deep learning"'
generator = torch.manual_seed(1)

# text embeds
prompt_embeds, negative_embeds = stage_1.encode_prompt(prompt)

# stage 1
116
stage_1_output = stage_1(
Patrick von Platen's avatar
Patrick von Platen committed
117
118
    prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_embeds, generator=generator, output_type="pt"
).images
119
#pt_to_pil(stage_1_output)[0].save("./if_stage_I.png")
Patrick von Platen's avatar
Patrick von Platen committed
120
121

# stage 2
122
123
stage_2_output = stage_2(
    image=stage_1_output,
Patrick von Platen's avatar
Patrick von Platen committed
124
125
126
127
128
    prompt_embeds=prompt_embeds,
    negative_prompt_embeds=negative_embeds,
    generator=generator,
    output_type="pt",
).images
129
#pt_to_pil(stage_2_output)[0].save("./if_stage_II.png")
Patrick von Platen's avatar
Patrick von Platen committed
130
131

# stage 3
132
133
134
stage_3_output = stage_3(prompt=prompt, image=stage_2_output, noise_level=100, generator=generator).images
#stage_3_output[0].save("./if_stage_III.png")
make_image_grid([pt_to_pil(stage_1_output)[0], pt_to_pil(stage_2_output)[0], stage_3_output[0]], rows=1, rows=3)
Patrick von Platen's avatar
Patrick von Platen committed
135
136
137
138
139
```

### Text Guided Image-to-Image Generation

The same IF model weights can be used for text-guided image-to-image translation or image variation.
140
In this case just make sure to load the weights using the [`IFImg2ImgPipeline`] and [`IFImg2ImgSuperResolutionPipeline`] pipelines.
Patrick von Platen's avatar
Patrick von Platen committed
141
142

**Note**: You can also directly move the weights of the text-to-image pipelines to the image-to-image pipelines
143
without loading them twice by making use of the [`~DiffusionPipeline.components`] argument as explained [here](#converting-between-different-pipelines).
Patrick von Platen's avatar
Patrick von Platen committed
144
145
146

```python
from diffusers import IFImg2ImgPipeline, IFImg2ImgSuperResolutionPipeline, DiffusionPipeline
147
from diffusers.utils import pt_to_pil, load_image, make_image_grid
Patrick von Platen's avatar
Patrick von Platen committed
148
149
150
151
import torch

# download image
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
152
original_image = load_image(url)
Patrick von Platen's avatar
Patrick von Platen committed
153
154
155
original_image = original_image.resize((768, 512))

# stage 1
apolinário's avatar
apolinário committed
156
stage_1 = IFImg2ImgPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
Patrick von Platen's avatar
Patrick von Platen committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
stage_1.enable_model_cpu_offload()

# stage 2
stage_2 = IFImg2ImgSuperResolutionPipeline.from_pretrained(
    "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16
)
stage_2.enable_model_cpu_offload()

# stage 3
safety_modules = {
    "feature_extractor": stage_1.feature_extractor,
    "safety_checker": stage_1.safety_checker,
    "watermarker": stage_1.watermarker,
}
stage_3 = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-x4-upscaler", **safety_modules, torch_dtype=torch.float16
)
stage_3.enable_model_cpu_offload()

prompt = "A fantasy landscape in style minecraft"
generator = torch.manual_seed(1)

# text embeds
prompt_embeds, negative_embeds = stage_1.encode_prompt(prompt)

# stage 1
183
stage_1_output = stage_1(
Patrick von Platen's avatar
Patrick von Platen committed
184
185
186
187
188
189
    image=original_image,
    prompt_embeds=prompt_embeds,
    negative_prompt_embeds=negative_embeds,
    generator=generator,
    output_type="pt",
).images
190
#pt_to_pil(stage_1_output)[0].save("./if_stage_I.png")
Patrick von Platen's avatar
Patrick von Platen committed
191
192

# stage 2
193
194
stage_2_output = stage_2(
    image=stage_1_output,
Patrick von Platen's avatar
Patrick von Platen committed
195
196
197
198
199
200
    original_image=original_image,
    prompt_embeds=prompt_embeds,
    negative_prompt_embeds=negative_embeds,
    generator=generator,
    output_type="pt",
).images
201
#pt_to_pil(stage_2_output)[0].save("./if_stage_II.png")
Patrick von Platen's avatar
Patrick von Platen committed
202
203

# stage 3
204
205
206
stage_3_output = stage_3(prompt=prompt, image=stage_2_output, generator=generator, noise_level=100).images
#stage_3_output[0].save("./if_stage_III.png")
make_image_grid([original_image, pt_to_pil(stage_1_output)[0], pt_to_pil(stage_2_output)[0], stage_3_output[0]], rows=1, rows=4)
Patrick von Platen's avatar
Patrick von Platen committed
207
208
209
210
211
212
213
214
215
216
217
218
```

### Text Guided Inpainting Generation

The same IF model weights can be used for text-guided image-to-image translation or image variation.
In this case just make sure to load the weights using the [`IFInpaintingPipeline`] and [`IFInpaintingSuperResolutionPipeline`] pipelines.

**Note**: You can also directly move the weights of the text-to-image pipelines to the image-to-image pipelines
without loading them twice by making use of the [`~DiffusionPipeline.components()`] function as explained [here](#converting-between-different-pipelines).

```python
from diffusers import IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, DiffusionPipeline
219
from diffusers.utils import pt_to_pil, load_image, make_image_grid
Patrick von Platen's avatar
Patrick von Platen committed
220
221
222
223
import torch

# download image
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/if/person.png"
224
original_image = load_image(url)
Patrick von Platen's avatar
Patrick von Platen committed
225
226
227

# download mask
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/if/glasses_mask.png"
228
mask_image = load_image(url)
Patrick von Platen's avatar
Patrick von Platen committed
229
230

# stage 1
apolinário's avatar
apolinário committed
231
stage_1 = IFInpaintingPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
Patrick von Platen's avatar
Patrick von Platen committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
stage_1.enable_model_cpu_offload()

# stage 2
stage_2 = IFInpaintingSuperResolutionPipeline.from_pretrained(
    "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16
)
stage_2.enable_model_cpu_offload()

# stage 3
safety_modules = {
    "feature_extractor": stage_1.feature_extractor,
    "safety_checker": stage_1.safety_checker,
    "watermarker": stage_1.watermarker,
}
stage_3 = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-x4-upscaler", **safety_modules, torch_dtype=torch.float16
)
stage_3.enable_model_cpu_offload()

prompt = "blue sunglasses"
generator = torch.manual_seed(1)

# text embeds
prompt_embeds, negative_embeds = stage_1.encode_prompt(prompt)

# stage 1
258
stage_1_output = stage_1(
Patrick von Platen's avatar
Patrick von Platen committed
259
260
261
262
263
264
265
    image=original_image,
    mask_image=mask_image,
    prompt_embeds=prompt_embeds,
    negative_prompt_embeds=negative_embeds,
    generator=generator,
    output_type="pt",
).images
266
#pt_to_pil(stage_1_output)[0].save("./if_stage_I.png")
Patrick von Platen's avatar
Patrick von Platen committed
267
268

# stage 2
269
270
stage_2_output = stage_2(
    image=stage_1_output,
Patrick von Platen's avatar
Patrick von Platen committed
271
272
273
274
275
276
277
    original_image=original_image,
    mask_image=mask_image,
    prompt_embeds=prompt_embeds,
    negative_prompt_embeds=negative_embeds,
    generator=generator,
    output_type="pt",
).images
278
#pt_to_pil(stage_1_output)[0].save("./if_stage_II.png")
Patrick von Platen's avatar
Patrick von Platen committed
279
280

# stage 3
281
282
283
stage_3_output = stage_3(prompt=prompt, image=stage_2_output, generator=generator, noise_level=100).images
#stage_3_output[0].save("./if_stage_III.png")
make_image_grid([original_image, mask_image, pt_to_pil(stage_1_output)[0], pt_to_pil(stage_2_output)[0], stage_3_output[0]], rows=1, rows=5)
Patrick von Platen's avatar
Patrick von Platen committed
284
285
286
287
288
289
290
291
292
```

### Converting between different pipelines

In addition to being loaded with `from_pretrained`, Pipelines can also be loaded directly from each other.

```python
from diffusers import IFPipeline, IFSuperResolutionPipeline

apolinário's avatar
apolinário committed
293
pipe_1 = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0")
Patrick von Platen's avatar
Patrick von Platen committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
pipe_2 = IFSuperResolutionPipeline.from_pretrained("DeepFloyd/IF-II-L-v1.0")


from diffusers import IFImg2ImgPipeline, IFImg2ImgSuperResolutionPipeline

pipe_1 = IFImg2ImgPipeline(**pipe_1.components)
pipe_2 = IFImg2ImgSuperResolutionPipeline(**pipe_2.components)


from diffusers import IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline

pipe_1 = IFInpaintingPipeline(**pipe_1.components)
pipe_2 = IFInpaintingSuperResolutionPipeline(**pipe_2.components)
```

### Optimizing for speed

The simplest optimization to run IF faster is to move all model components to the GPU.

```py
apolinário's avatar
apolinário committed
314
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
Patrick von Platen's avatar
Patrick von Platen committed
315
316
317
318
319
pipe.to("cuda")
```

You can also run the diffusion process for a shorter number of timesteps.

320
This can either be done with the `num_inference_steps` argument:
Patrick von Platen's avatar
Patrick von Platen committed
321
322
323
324
325

```py
pipe("<prompt>", num_inference_steps=30)
```

326
Or with the `timesteps` argument:
Patrick von Platen's avatar
Patrick von Platen committed
327
328
329
330
331
332
333
334

```py
from diffusers.pipelines.deepfloyd_if import fast27_timesteps

pipe("<prompt>", timesteps=fast27_timesteps)
```

When doing image variation or inpainting, you can also decrease the number of timesteps
335
with the strength argument. The strength argument is the amount of noise to add to the input image which also determines how many steps to run in the denoising process.
Patrick von Platen's avatar
Patrick von Platen committed
336
337
338
A smaller number will vary the image less but run faster.

```py
apolinário's avatar
apolinário committed
339
pipe = IFImg2ImgPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
Patrick von Platen's avatar
Patrick von Platen committed
340
341
342
343
344
345
346
347
348
pipe.to("cuda")

image = pipe(image=image, prompt="<prompt>", strength=0.3).images
```

You can also use [`torch.compile`](../../optimization/torch2.0). Note that we have not exhaustively tested `torch.compile`
with IF and it might not give expected results.

```py
349
from diffusers import DiffusionPipeline
Patrick von Platen's avatar
Patrick von Platen committed
350
351
import torch

apolinário's avatar
apolinário committed
352
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
Patrick von Platen's avatar
Patrick von Platen committed
353
354
pipe.to("cuda")

355
356
pipe.text_encoder = torch.compile(pipe.text_encoder, mode="reduce-overhead", fullgraph=True)
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
Patrick von Platen's avatar
Patrick von Platen committed
357
358
359
360
```

### Optimizing for memory

361
When optimizing for GPU memory, we can use the standard diffusers CPU offloading APIs.
Patrick von Platen's avatar
Patrick von Platen committed
362
363
364
365

Either the model based CPU offloading,

```py
apolinário's avatar
apolinário committed
366
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
Patrick von Platen's avatar
Patrick von Platen committed
367
368
369
370
371
372
pipe.enable_model_cpu_offload()
```

or the more aggressive layer based CPU offloading.

```py
apolinário's avatar
apolinário committed
373
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
Patrick von Platen's avatar
Patrick von Platen committed
374
375
376
377
378
379
380
381
382
pipe.enable_sequential_cpu_offload()
```

Additionally, T5 can be loaded in 8bit precision

```py
from transformers import T5EncoderModel

text_encoder = T5EncoderModel.from_pretrained(
apolinário's avatar
apolinário committed
383
    "DeepFloyd/IF-I-XL-v1.0", subfolder="text_encoder", device_map="auto", load_in_8bit=True, variant="8bit"
Patrick von Platen's avatar
Patrick von Platen committed
384
385
386
387
388
)

from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained(
apolinário's avatar
apolinário committed
389
    "DeepFloyd/IF-I-XL-v1.0",
Patrick von Platen's avatar
Patrick von Platen committed
390
391
392
393
394
395
396
397
    text_encoder=text_encoder,  # pass the previously instantiated 8bit text encoder
    unet=None,
    device_map="auto",
)

prompt_embeds, negative_embeds = pipe.encode_prompt("<prompt>")
```

398
399
For CPU RAM constrained machines like Google Colab free tier where we can't load all model components to the CPU at once, we can manually only load the pipeline with
the text encoder or UNet when the respective model components are needed.
Patrick von Platen's avatar
Patrick von Platen committed
400
401
402
403
404
405

```py
from diffusers import IFPipeline, IFSuperResolutionPipeline
import torch
import gc
from transformers import T5EncoderModel
406
from diffusers.utils import pt_to_pil, make_image_grid
Patrick von Platen's avatar
Patrick von Platen committed
407
408

text_encoder = T5EncoderModel.from_pretrained(
apolinário's avatar
apolinário committed
409
    "DeepFloyd/IF-I-XL-v1.0", subfolder="text_encoder", device_map="auto", load_in_8bit=True, variant="8bit"
Patrick von Platen's avatar
Patrick von Platen committed
410
411
412
413
)

# text to image
pipe = DiffusionPipeline.from_pretrained(
apolinário's avatar
apolinário committed
414
    "DeepFloyd/IF-I-XL-v1.0",
Patrick von Platen's avatar
Patrick von Platen committed
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
    text_encoder=text_encoder,  # pass the previously instantiated 8bit text encoder
    unet=None,
    device_map="auto",
)

prompt = 'a photo of a kangaroo wearing an orange hoodie and blue sunglasses standing in front of the eiffel tower holding a sign that says "very deep learning"'
prompt_embeds, negative_embeds = pipe.encode_prompt(prompt)

# Remove the pipeline so we can re-load the pipeline with the unet
del text_encoder
del pipe
gc.collect()
torch.cuda.empty_cache()

pipe = IFPipeline.from_pretrained(
apolinário's avatar
apolinário committed
430
    "DeepFloyd/IF-I-XL-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16, device_map="auto"
Patrick von Platen's avatar
Patrick von Platen committed
431
432
433
)

generator = torch.Generator().manual_seed(0)
434
stage_1_output = pipe(
Patrick von Platen's avatar
Patrick von Platen committed
435
436
437
438
439
440
    prompt_embeds=prompt_embeds,
    negative_prompt_embeds=negative_embeds,
    output_type="pt",
    generator=generator,
).images

441
#pt_to_pil(stage_1_output)[0].save("./if_stage_I.png")
Patrick von Platen's avatar
Patrick von Platen committed
442
443
444
445
446
447
448
449
450
451
452
453
454

# Remove the pipeline so we can load the super-resolution pipeline
del pipe
gc.collect()
torch.cuda.empty_cache()

# First super resolution

pipe = IFSuperResolutionPipeline.from_pretrained(
    "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16, device_map="auto"
)

generator = torch.Generator().manual_seed(0)
455
456
stage_2_output = pipe(
    image=stage_1_output,
Patrick von Platen's avatar
Patrick von Platen committed
457
458
459
460
461
462
    prompt_embeds=prompt_embeds,
    negative_prompt_embeds=negative_embeds,
    output_type="pt",
    generator=generator,
).images

463
464
#pt_to_pil(stage_2_output)[0].save("./if_stage_II.png")
make_image_grid([pt_to_pil(stage_1_output)[0], pt_to_pil(stage_2_output)[0]], rows=1, rows=2)
Patrick von Platen's avatar
Patrick von Platen committed
465
466
467
468
469
470
471
```

## Available Pipelines:

| Pipeline | Tasks | Colab
|---|---|:---:|
| [pipeline_if.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if.py) | *Text-to-Image Generation* | - |
472
| [pipeline_if_superresolution.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py) | *Text-to-Image Generation* | - |
Patrick von Platen's avatar
Patrick von Platen committed
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
| [pipeline_if_img2img.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py) | *Image-to-Image Generation* | - |
| [pipeline_if_img2img_superresolution.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py) | *Image-to-Image Generation* | - |
| [pipeline_if_inpainting.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py) | *Image-to-Image Generation* | - |
| [pipeline_if_inpainting_superresolution.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py) | *Image-to-Image Generation* | - |

## IFPipeline
[[autodoc]] IFPipeline
	- all
	- __call__

## IFSuperResolutionPipeline
[[autodoc]] IFSuperResolutionPipeline
	- all
	- __call__

## IFImg2ImgPipeline
[[autodoc]] IFImg2ImgPipeline
	- all
	- __call__

## IFImg2ImgSuperResolutionPipeline
[[autodoc]] IFImg2ImgSuperResolutionPipeline
	- all
	- __call__

## IFInpaintingPipeline
[[autodoc]] IFInpaintingPipeline
	- all
	- __call__

## IFInpaintingSuperResolutionPipeline
[[autodoc]] IFInpaintingSuperResolutionPipeline
	- all
	- __call__