"docs/source/vscode:/vscode.git/clone" did not exist on "06e9ebebd51c3db779dedec5556251c8ecc3a00a"
sample_loop.py 5.32 KB
Newer Older
1
#!/usr/bin/env python3
Patrick von Platen's avatar
improve  
Patrick von Platen committed
2
from diffusers import UNetModel, GaussianDDPMScheduler
3
4
import torch
import torch.nn.functional as F
Patrick von Platen's avatar
improve  
Patrick von Platen committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import numpy as np
import PIL.Image
import tqdm

#torch_device = "cuda"
#
#unet = UNetModel.from_pretrained("/home/patrick/ddpm-lsun-church")
#unet.to(torch_device)
#
#TIME_STEPS = 10
#
#scheduler = GaussianDDPMScheduler.from_config("/home/patrick/ddpm-lsun-church", timesteps=TIME_STEPS)
#
#diffusion_config = {
#    "beta_start": 0.0001,
#    "beta_end": 0.02,
#    "num_diffusion_timesteps": TIME_STEPS,
#}
#
24
# 2. Do one denoising step with model
Patrick von Platen's avatar
improve  
Patrick von Platen committed
25
26
27
28
29
30
#batch_size, num_channels, height, width = 1, 3, 256, 256
#
#torch.manual_seed(0)
#noise_image = torch.randn(batch_size, num_channels, height, width, device="cuda")
#
#
31
# Helper
Patrick von Platen's avatar
improve  
Patrick von Platen committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#def noise_like(shape, device, repeat=False):
#    def repeat_noise():
#        return torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
#
#    def noise():
#        return torch.randn(shape, device=device)
#
#    return repeat_noise() if repeat else noise()
#
#
#betas = np.linspace(diffusion_config["beta_start"], diffusion_config["beta_end"], diffusion_config["num_diffusion_timesteps"], dtype=np.float64)
#betas = torch.tensor(betas, device=torch_device)
#alphas = 1.0 - betas
#
#alphas_cumprod = torch.cumprod(alphas, axis=0)
#alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value=1.0)
#
#posterior_mean_coef1 = betas * torch.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)
#posterior_mean_coef2 = (1.0 - alphas_cumprod_prev) * torch.sqrt(alphas) / (1.0 - alphas_cumprod)
#
#posterior_variance = betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)
#posterior_log_variance_clipped = torch.log(posterior_variance.clamp(min=1e-20))
#
#
#sqrt_recip_alphas_cumprod = torch.sqrt(1.0 / alphas_cumprod)
#sqrt_recipm1_alphas_cumprod = torch.sqrt(1.0 / alphas_cumprod - 1)
#
#
#noise_coeff = (1 - alphas) / torch.sqrt(1 - alphas_cumprod)
#coeff = 1 / torch.sqrt(alphas)


def real_fn():
    # Compare the following to Algorithm 2 Sampling of paper: https://arxiv.org/pdf/2006.11239.pdf
    # 1: x_t ~ N(0,1)
    x_t = noise_image
    # 2: for t = T, ...., 1 do
    for i in reversed(range(TIME_STEPS)):
        t = torch.tensor([i]).to(torch_device)
        # 3: z ~ N(0, 1)
        noise = noise_like(x_t.shape, torch_device)

        # 4:  √1αtxt − √1−αt1−α¯tθ(xt, t) + σtz
        # ------------------------- MODEL ------------------------------------#
        with torch.no_grad():
            pred_noise = unet(x_t, t)  # pred epsilon_theta

    #    pred_x = sqrt_recip_alphas_cumprod[t] * x_t - sqrt_recipm1_alphas_cumprod[t] * pred_noise
    #    pred_x.clamp_(-1.0, 1.0)
        # pred mean
    #    posterior_mean = posterior_mean_coef1[t] * pred_x + posterior_mean_coef2[t] * x_t
        # --------------------------------------------------------------------#

        posterior_mean = coeff[t] * (x_t - noise_coeff[t] * pred_noise)

        # ------------------------- Variance Scheduler -----------------------#
        # pred variance
        posterior_log_variance = posterior_log_variance_clipped[t]

        b, *_, device = *x_t.shape, x_t.device
        nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x_t.shape) - 1)))
        posterior_variance = nonzero_mask * (0.5 * posterior_log_variance).exp()
        # --------------------------------------------------------------------#

        x_t_1 = (posterior_mean + posterior_variance * noise).to(torch.float32)
        x_t = x_t_1

        print(x_t.abs().sum())


def post_process_to_image(x_t):
    image = x_t.cpu().permute(0, 2, 3, 1)
    image = (image + 1.0) * 127.5
    image = image.numpy().astype(np.uint8)

    return PIL.Image.fromarray(image[0])


from pytorch_diffusion import Diffusion

#diffusion = Diffusion.from_pretrained("lsun_church")
#samples = diffusion.denoise(1)
#
#image = post_process_to_image(samples)
#image.save("check.png")
#import ipdb; ipdb.set_trace()


device = "cuda"
scheduler = GaussianDDPMScheduler.from_config("/home/patrick/ddpm-lsun-church", timesteps=10)

import ipdb; ipdb.set_trace()

model = UNetModel.from_pretrained("/home/patrick/ddpm-lsun-church").to(device)
126
127


Patrick von Platen's avatar
improve  
Patrick von Platen committed
128
129
torch.manual_seed(0)
next_image = scheduler.sample_noise((1, model.in_channels, model.resolution, model.resolution), device=device)
130

Patrick von Platen's avatar
improve  
Patrick von Platen committed
131
132
133
134
135
136
for t in tqdm.tqdm(reversed(range(len(scheduler))), total=len(scheduler)):
    # define coefficients for time step t
    clip_image_coeff = 1 / torch.sqrt(scheduler.get_alpha_prod(t))
    clip_noise_coeff = torch.sqrt(1 / scheduler.get_alpha_prod(t) - 1)
    image_coeff = (1 - scheduler.get_alpha_prod(t - 1)) * torch.sqrt(scheduler.get_alpha(t)) / (1 - scheduler.get_alpha_prod(t))
    clip_coeff = torch.sqrt(scheduler.get_alpha_prod(t - 1)) * scheduler.get_beta(t) / (1 - scheduler.get_alpha_prod(t))
137

Patrick von Platen's avatar
improve  
Patrick von Platen committed
138
139
140
    # predict noise residual
    with torch.no_grad():
        noise_residual = model(next_image, t)
141

Patrick von Platen's avatar
improve  
Patrick von Platen committed
142
143
144
145
    # compute prev image from noise
    pred_mean = clip_image_coeff * next_image - clip_noise_coeff * noise_residual
    pred_mean = torch.clamp(pred_mean, -1, 1)
    image = clip_coeff * pred_mean + image_coeff * next_image
146

Patrick von Platen's avatar
improve  
Patrick von Platen committed
147
148
    # sample variance
    variance = scheduler.sample_variance(t, image.shape, device=device)
149

Patrick von Platen's avatar
improve  
Patrick von Platen committed
150
151
    # sample previous image
    sampled_image = image + variance
152

Patrick von Platen's avatar
improve  
Patrick von Platen committed
153
    next_image = sampled_image
154
155


Patrick von Platen's avatar
improve  
Patrick von Platen committed
156
157
image = post_process_to_image(next_image)
image.save("example_new.png")