attention_processor.py 104 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import inspect
15
from importlib import import_module
Patrick von Platen's avatar
Patrick von Platen committed
16
17
18
19
from typing import Callable, Optional, Union

import torch
import torch.nn.functional as F
20
from torch import nn
Patrick von Platen's avatar
Patrick von Platen committed
21

22
from ..image_processor import IPAdapterMaskProcessor
23
from ..utils import USE_PEFT_BACKEND, deprecate, logging
Patrick von Platen's avatar
Patrick von Platen committed
24
from ..utils.import_utils import is_xformers_available
Dhruv Nair's avatar
Dhruv Nair committed
25
from ..utils.torch_utils import maybe_allow_in_graph
26
from .lora import LoRACompatibleLinear, LoRALinearLayer
Patrick von Platen's avatar
Patrick von Platen committed
27
28
29
30
31
32
33
34
35
36
37
38


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


if is_xformers_available():
    import xformers
    import xformers.ops
else:
    xformers = None


39
@maybe_allow_in_graph
Patrick von Platen's avatar
Patrick von Platen committed
40
41
42
43
44
class Attention(nn.Module):
    r"""
    A cross attention layer.

    Parameters:
45
46
        query_dim (`int`):
            The number of channels in the query.
Patrick von Platen's avatar
Patrick von Platen committed
47
48
        cross_attention_dim (`int`, *optional*):
            The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
49
50
51
52
53
54
        heads (`int`,  *optional*, defaults to 8):
            The number of heads to use for multi-head attention.
        dim_head (`int`,  *optional*, defaults to 64):
            The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability to use.
Patrick von Platen's avatar
Patrick von Platen committed
55
56
        bias (`bool`, *optional*, defaults to False):
            Set to `True` for the query, key, and value linear layers to contain a bias parameter.
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
        upcast_attention (`bool`, *optional*, defaults to False):
            Set to `True` to upcast the attention computation to `float32`.
        upcast_softmax (`bool`, *optional*, defaults to False):
            Set to `True` to upcast the softmax computation to `float32`.
        cross_attention_norm (`str`, *optional*, defaults to `None`):
            The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`.
        cross_attention_norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups to use for the group norm in the cross attention.
        added_kv_proj_dim (`int`, *optional*, defaults to `None`):
            The number of channels to use for the added key and value projections. If `None`, no projection is used.
        norm_num_groups (`int`, *optional*, defaults to `None`):
            The number of groups to use for the group norm in the attention.
        spatial_norm_dim (`int`, *optional*, defaults to `None`):
            The number of channels to use for the spatial normalization.
        out_bias (`bool`, *optional*, defaults to `True`):
            Set to `True` to use a bias in the output linear layer.
        scale_qk (`bool`, *optional*, defaults to `True`):
            Set to `True` to scale the query and key by `1 / sqrt(dim_head)`.
        only_cross_attention (`bool`, *optional*, defaults to `False`):
            Set to `True` to only use cross attention and not added_kv_proj_dim. Can only be set to `True` if
            `added_kv_proj_dim` is not `None`.
        eps (`float`, *optional*, defaults to 1e-5):
            An additional value added to the denominator in group normalization that is used for numerical stability.
        rescale_output_factor (`float`, *optional*, defaults to 1.0):
            A factor to rescale the output by dividing it with this value.
        residual_connection (`bool`, *optional*, defaults to `False`):
            Set to `True` to add the residual connection to the output.
        _from_deprecated_attn_block (`bool`, *optional*, defaults to `False`):
            Set to `True` if the attention block is loaded from a deprecated state dict.
        processor (`AttnProcessor`, *optional*, defaults to `None`):
            The attention processor to use. If `None`, defaults to `AttnProcessor2_0` if `torch 2.x` is used and
            `AttnProcessor` otherwise.
Patrick von Platen's avatar
Patrick von Platen committed
89
90
91
92
93
94
95
96
97
    """

    def __init__(
        self,
        query_dim: int,
        cross_attention_dim: Optional[int] = None,
        heads: int = 8,
        dim_head: int = 64,
        dropout: float = 0.0,
98
        bias: bool = False,
Patrick von Platen's avatar
Patrick von Platen committed
99
100
        upcast_attention: bool = False,
        upcast_softmax: bool = False,
101
102
        cross_attention_norm: Optional[str] = None,
        cross_attention_norm_num_groups: int = 32,
Patrick von Platen's avatar
Patrick von Platen committed
103
104
        added_kv_proj_dim: Optional[int] = None,
        norm_num_groups: Optional[int] = None,
YiYi Xu's avatar
YiYi Xu committed
105
        spatial_norm_dim: Optional[int] = None,
Patrick von Platen's avatar
Patrick von Platen committed
106
107
        out_bias: bool = True,
        scale_qk: bool = True,
108
        only_cross_attention: bool = False,
109
110
111
        eps: float = 1e-5,
        rescale_output_factor: float = 1.0,
        residual_connection: bool = False,
112
        _from_deprecated_attn_block: bool = False,
Patrick von Platen's avatar
Patrick von Platen committed
113
        processor: Optional["AttnProcessor"] = None,
114
        out_dim: int = None,
Patrick von Platen's avatar
Patrick von Platen committed
115
116
    ):
        super().__init__()
117
        self.inner_dim = out_dim if out_dim is not None else dim_head * heads
118
        self.query_dim = query_dim
119
120
        self.use_bias = bias
        self.is_cross_attention = cross_attention_dim is not None
121
        self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
Patrick von Platen's avatar
Patrick von Platen committed
122
123
        self.upcast_attention = upcast_attention
        self.upcast_softmax = upcast_softmax
124
125
        self.rescale_output_factor = rescale_output_factor
        self.residual_connection = residual_connection
126
        self.dropout = dropout
127
        self.fused_projections = False
128
        self.out_dim = out_dim if out_dim is not None else query_dim
129
130
131
132

        # we make use of this private variable to know whether this class is loaded
        # with an deprecated state dict so that we can convert it on the fly
        self._from_deprecated_attn_block = _from_deprecated_attn_block
Patrick von Platen's avatar
Patrick von Platen committed
133

134
135
        self.scale_qk = scale_qk
        self.scale = dim_head**-0.5 if self.scale_qk else 1.0
Patrick von Platen's avatar
Patrick von Platen committed
136

137
        self.heads = out_dim // dim_head if out_dim is not None else heads
Patrick von Platen's avatar
Patrick von Platen committed
138
139
140
141
142
143
        # for slice_size > 0 the attention score computation
        # is split across the batch axis to save memory
        # You can set slice_size with `set_attention_slice`
        self.sliceable_head_dim = heads

        self.added_kv_proj_dim = added_kv_proj_dim
144
145
146
147
148
149
        self.only_cross_attention = only_cross_attention

        if self.added_kv_proj_dim is None and self.only_cross_attention:
            raise ValueError(
                "`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`."
            )
Patrick von Platen's avatar
Patrick von Platen committed
150
151

        if norm_num_groups is not None:
152
            self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True)
Patrick von Platen's avatar
Patrick von Platen committed
153
154
155
        else:
            self.group_norm = None

YiYi Xu's avatar
YiYi Xu committed
156
157
158
159
160
        if spatial_norm_dim is not None:
            self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim)
        else:
            self.spatial_norm = None

161
162
163
        if cross_attention_norm is None:
            self.norm_cross = None
        elif cross_attention_norm == "layer_norm":
164
            self.norm_cross = nn.LayerNorm(self.cross_attention_dim)
165
166
167
168
169
170
171
172
173
        elif cross_attention_norm == "group_norm":
            if self.added_kv_proj_dim is not None:
                # The given `encoder_hidden_states` are initially of shape
                # (batch_size, seq_len, added_kv_proj_dim) before being projected
                # to (batch_size, seq_len, cross_attention_dim). The norm is applied
                # before the projection, so we need to use `added_kv_proj_dim` as
                # the number of channels for the group norm.
                norm_cross_num_channels = added_kv_proj_dim
            else:
174
                norm_cross_num_channels = self.cross_attention_dim
175
176
177
178
179
180
181
182

            self.norm_cross = nn.GroupNorm(
                num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True
            )
        else:
            raise ValueError(
                f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'"
            )
Patrick von Platen's avatar
Patrick von Platen committed
183

184
185
186
187
188
        if USE_PEFT_BACKEND:
            linear_cls = nn.Linear
        else:
            linear_cls = LoRACompatibleLinear

189
        self.linear_cls = linear_cls
190
        self.to_q = linear_cls(query_dim, self.inner_dim, bias=bias)
191
192
193

        if not self.only_cross_attention:
            # only relevant for the `AddedKVProcessor` classes
194
195
            self.to_k = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias)
            self.to_v = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias)
196
197
198
        else:
            self.to_k = None
            self.to_v = None
Patrick von Platen's avatar
Patrick von Platen committed
199
200

        if self.added_kv_proj_dim is not None:
201
202
            self.add_k_proj = linear_cls(added_kv_proj_dim, self.inner_dim)
            self.add_v_proj = linear_cls(added_kv_proj_dim, self.inner_dim)
Patrick von Platen's avatar
Patrick von Platen committed
203
204

        self.to_out = nn.ModuleList([])
205
        self.to_out.append(linear_cls(self.inner_dim, self.out_dim, bias=out_bias))
Patrick von Platen's avatar
Patrick von Platen committed
206
207
208
209
210
211
212
213
        self.to_out.append(nn.Dropout(dropout))

        # set attention processor
        # We use the AttnProcessor2_0 by default when torch 2.x is used which uses
        # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
        # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
        if processor is None:
            processor = (
214
                AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
Patrick von Platen's avatar
Patrick von Platen committed
215
216
217
218
219
            )
        self.set_processor(processor)

    def set_use_memory_efficient_attention_xformers(
        self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None
220
221
222
223
224
225
226
227
228
229
230
    ) -> None:
        r"""
        Set whether to use memory efficient attention from `xformers` or not.

        Args:
            use_memory_efficient_attention_xformers (`bool`):
                Whether to use memory efficient attention from `xformers` or not.
            attention_op (`Callable`, *optional*):
                The attention operation to use. Defaults to `None` which uses the default attention operation from
                `xformers`.
        """
Patrick von Platen's avatar
Patrick von Platen committed
231
        is_lora = hasattr(self, "processor") and isinstance(
232
            self.processor,
233
            LORA_ATTENTION_PROCESSORS,
Patrick von Platen's avatar
Patrick von Platen committed
234
        )
235
        is_custom_diffusion = hasattr(self, "processor") and isinstance(
236
237
            self.processor,
            (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor, CustomDiffusionAttnProcessor2_0),
238
        )
239
240
241
242
243
244
245
246
247
248
        is_added_kv_processor = hasattr(self, "processor") and isinstance(
            self.processor,
            (
                AttnAddedKVProcessor,
                AttnAddedKVProcessor2_0,
                SlicedAttnAddedKVProcessor,
                XFormersAttnAddedKVProcessor,
                LoRAAttnAddedKVProcessor,
            ),
        )
Patrick von Platen's avatar
Patrick von Platen committed
249
250

        if use_memory_efficient_attention_xformers:
251
            if is_added_kv_processor and (is_lora or is_custom_diffusion):
Patrick von Platen's avatar
Patrick von Platen committed
252
                raise NotImplementedError(
Kashif Rasul's avatar
Kashif Rasul committed
253
                    f"Memory efficient attention is currently not supported for LoRA or custom diffusion for attention processor type {self.processor}"
Patrick von Platen's avatar
Patrick von Platen committed
254
                )
255
            if not is_xformers_available():
Patrick von Platen's avatar
Patrick von Platen committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
                raise ModuleNotFoundError(
                    (
                        "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
                        " xformers"
                    ),
                    name="xformers",
                )
            elif not torch.cuda.is_available():
                raise ValueError(
                    "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
                    " only available for GPU "
                )
            else:
                try:
                    # Make sure we can run the memory efficient attention
                    _ = xformers.ops.memory_efficient_attention(
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                    )
                except Exception as e:
                    raise e

            if is_lora:
280
281
                # TODO (sayakpaul): should we throw a warning if someone wants to use the xformers
                # variant when using PT 2.0 now that we have LoRAAttnProcessor2_0?
Patrick von Platen's avatar
Patrick von Platen committed
282
283
284
285
286
287
288
289
                processor = LoRAXFormersAttnProcessor(
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                    rank=self.processor.rank,
                    attention_op=attention_op,
                )
                processor.load_state_dict(self.processor.state_dict())
                processor.to(self.processor.to_q_lora.up.weight.device)
290
291
292
293
294
295
296
297
298
299
300
            elif is_custom_diffusion:
                processor = CustomDiffusionXFormersAttnProcessor(
                    train_kv=self.processor.train_kv,
                    train_q_out=self.processor.train_q_out,
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                    attention_op=attention_op,
                )
                processor.load_state_dict(self.processor.state_dict())
                if hasattr(self.processor, "to_k_custom_diffusion"):
                    processor.to(self.processor.to_k_custom_diffusion.weight.device)
301
302
303
304
305
306
307
308
309
            elif is_added_kv_processor:
                # TODO(Patrick, Suraj, William) - currently xformers doesn't work for UnCLIP
                # which uses this type of cross attention ONLY because the attention mask of format
                # [0, ..., -10.000, ..., 0, ...,] is not supported
                # throw warning
                logger.info(
                    "Memory efficient attention with `xformers` might currently not work correctly if an attention mask is required for the attention operation."
                )
                processor = XFormersAttnAddedKVProcessor(attention_op=attention_op)
Patrick von Platen's avatar
Patrick von Platen committed
310
311
312
313
            else:
                processor = XFormersAttnProcessor(attention_op=attention_op)
        else:
            if is_lora:
314
315
316
317
                attn_processor_class = (
                    LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
                )
                processor = attn_processor_class(
Patrick von Platen's avatar
Patrick von Platen committed
318
319
320
321
322
323
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                    rank=self.processor.rank,
                )
                processor.load_state_dict(self.processor.state_dict())
                processor.to(self.processor.to_q_lora.up.weight.device)
324
            elif is_custom_diffusion:
325
326
327
328
329
330
                attn_processor_class = (
                    CustomDiffusionAttnProcessor2_0
                    if hasattr(F, "scaled_dot_product_attention")
                    else CustomDiffusionAttnProcessor
                )
                processor = attn_processor_class(
331
332
333
334
335
336
337
338
                    train_kv=self.processor.train_kv,
                    train_q_out=self.processor.train_q_out,
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                )
                processor.load_state_dict(self.processor.state_dict())
                if hasattr(self.processor, "to_k_custom_diffusion"):
                    processor.to(self.processor.to_k_custom_diffusion.weight.device)
Patrick von Platen's avatar
Patrick von Platen committed
339
            else:
340
341
342
343
344
345
346
347
348
                # set attention processor
                # We use the AttnProcessor2_0 by default when torch 2.x is used which uses
                # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
                # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
                processor = (
                    AttnProcessor2_0()
                    if hasattr(F, "scaled_dot_product_attention") and self.scale_qk
                    else AttnProcessor()
                )
Patrick von Platen's avatar
Patrick von Platen committed
349
350
351

        self.set_processor(processor)

352
353
354
355
356
357
358
359
    def set_attention_slice(self, slice_size: int) -> None:
        r"""
        Set the slice size for attention computation.

        Args:
            slice_size (`int`):
                The slice size for attention computation.
        """
Patrick von Platen's avatar
Patrick von Platen committed
360
361
362
363
364
365
366
367
368
369
        if slice_size is not None and slice_size > self.sliceable_head_dim:
            raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")

        if slice_size is not None and self.added_kv_proj_dim is not None:
            processor = SlicedAttnAddedKVProcessor(slice_size)
        elif slice_size is not None:
            processor = SlicedAttnProcessor(slice_size)
        elif self.added_kv_proj_dim is not None:
            processor = AttnAddedKVProcessor()
        else:
370
371
372
373
374
375
376
            # set attention processor
            # We use the AttnProcessor2_0 by default when torch 2.x is used which uses
            # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
            # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
            processor = (
                AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
            )
Patrick von Platen's avatar
Patrick von Platen committed
377
378
379

        self.set_processor(processor)

380
    def set_processor(self, processor: "AttnProcessor") -> None:
381
382
383
384
385
386
387
        r"""
        Set the attention processor to use.

        Args:
            processor (`AttnProcessor`):
                The attention processor to use.
        """
Patrick von Platen's avatar
Patrick von Platen committed
388
389
390
391
392
393
394
395
396
397
398
399
        # if current processor is in `self._modules` and if passed `processor` is not, we need to
        # pop `processor` from `self._modules`
        if (
            hasattr(self, "processor")
            and isinstance(self.processor, torch.nn.Module)
            and not isinstance(processor, torch.nn.Module)
        ):
            logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}")
            self._modules.pop("processor")

        self.processor = processor

400
    def get_processor(self, return_deprecated_lora: bool = False) -> "AttentionProcessor":
401
402
403
404
405
406
407
408
409
410
        r"""
        Get the attention processor in use.

        Args:
            return_deprecated_lora (`bool`, *optional*, defaults to `False`):
                Set to `True` to return the deprecated LoRA attention processor.

        Returns:
            "AttentionProcessor": The attention processor in use.
        """
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
        if not return_deprecated_lora:
            return self.processor

        # TODO(Sayak, Patrick). The rest of the function is needed to ensure backwards compatible
        # serialization format for LoRA Attention Processors. It should be deleted once the integration
        # with PEFT is completed.
        is_lora_activated = {
            name: module.lora_layer is not None
            for name, module in self.named_modules()
            if hasattr(module, "lora_layer")
        }

        # 1. if no layer has a LoRA activated we can return the processor as usual
        if not any(is_lora_activated.values()):
            return self.processor

        # If doesn't apply LoRA do `add_k_proj` or `add_v_proj`
        is_lora_activated.pop("add_k_proj", None)
        is_lora_activated.pop("add_v_proj", None)
        # 2. else it is not posssible that only some layers have LoRA activated
        if not all(is_lora_activated.values()):
            raise ValueError(
                f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}"
            )

        # 3. And we need to merge the current LoRA layers into the corresponding LoRA attention processor
        non_lora_processor_cls_name = self.processor.__class__.__name__
        lora_processor_cls = getattr(import_module(__name__), "LoRA" + non_lora_processor_cls_name)

        hidden_size = self.inner_dim

        # now create a LoRA attention processor from the LoRA layers
        if lora_processor_cls in [LoRAAttnProcessor, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor]:
            kwargs = {
                "cross_attention_dim": self.cross_attention_dim,
                "rank": self.to_q.lora_layer.rank,
                "network_alpha": self.to_q.lora_layer.network_alpha,
                "q_rank": self.to_q.lora_layer.rank,
                "q_hidden_size": self.to_q.lora_layer.out_features,
                "k_rank": self.to_k.lora_layer.rank,
                "k_hidden_size": self.to_k.lora_layer.out_features,
                "v_rank": self.to_v.lora_layer.rank,
                "v_hidden_size": self.to_v.lora_layer.out_features,
                "out_rank": self.to_out[0].lora_layer.rank,
                "out_hidden_size": self.to_out[0].lora_layer.out_features,
            }

            if hasattr(self.processor, "attention_op"):
459
                kwargs["attention_op"] = self.processor.attention_op
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489

            lora_processor = lora_processor_cls(hidden_size, **kwargs)
            lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
            lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
            lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
            lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())
        elif lora_processor_cls == LoRAAttnAddedKVProcessor:
            lora_processor = lora_processor_cls(
                hidden_size,
                cross_attention_dim=self.add_k_proj.weight.shape[0],
                rank=self.to_q.lora_layer.rank,
                network_alpha=self.to_q.lora_layer.network_alpha,
            )
            lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
            lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
            lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
            lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())

            # only save if used
            if self.add_k_proj.lora_layer is not None:
                lora_processor.add_k_proj_lora.load_state_dict(self.add_k_proj.lora_layer.state_dict())
                lora_processor.add_v_proj_lora.load_state_dict(self.add_v_proj.lora_layer.state_dict())
            else:
                lora_processor.add_k_proj_lora = None
                lora_processor.add_v_proj_lora = None
        else:
            raise ValueError(f"{lora_processor_cls} does not exist.")

        return lora_processor

490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        **cross_attention_kwargs,
    ) -> torch.Tensor:
        r"""
        The forward method of the `Attention` class.

        Args:
            hidden_states (`torch.Tensor`):
                The hidden states of the query.
            encoder_hidden_states (`torch.Tensor`, *optional*):
                The hidden states of the encoder.
            attention_mask (`torch.Tensor`, *optional*):
                The attention mask to use. If `None`, no mask is applied.
            **cross_attention_kwargs:
                Additional keyword arguments to pass along to the cross attention.

        Returns:
            `torch.Tensor`: The output of the attention layer.
        """
Patrick von Platen's avatar
Patrick von Platen committed
513
514
515
        # The `Attention` class can call different attention processors / attention functions
        # here we simply pass along all tensors to the selected processor class
        # For standard processors that are defined here, `**cross_attention_kwargs` is empty
516
517
518
519
520
521
522
523
524

        attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys())
        unused_kwargs = [k for k, _ in cross_attention_kwargs.items() if k not in attn_parameters]
        if len(unused_kwargs) > 0:
            logger.warning(
                f"cross_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored."
            )
        cross_attention_kwargs = {k: w for k, w in cross_attention_kwargs.items() if k in attn_parameters}

Patrick von Platen's avatar
Patrick von Platen committed
525
526
527
528
529
530
531
532
        return self.processor(
            self,
            hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )

533
534
535
536
537
538
539
540
541
542
543
    def batch_to_head_dim(self, tensor: torch.Tensor) -> torch.Tensor:
        r"""
        Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size // heads, seq_len, dim * heads]`. `heads`
        is the number of heads initialized while constructing the `Attention` class.

        Args:
            tensor (`torch.Tensor`): The tensor to reshape.

        Returns:
            `torch.Tensor`: The reshaped tensor.
        """
Patrick von Platen's avatar
Patrick von Platen committed
544
545
546
547
548
549
        head_size = self.heads
        batch_size, seq_len, dim = tensor.shape
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

550
551
552
553
554
555
556
557
558
559
560
561
562
    def head_to_batch_dim(self, tensor: torch.Tensor, out_dim: int = 3) -> torch.Tensor:
        r"""
        Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size, seq_len, heads, dim // heads]` `heads` is
        the number of heads initialized while constructing the `Attention` class.

        Args:
            tensor (`torch.Tensor`): The tensor to reshape.
            out_dim (`int`, *optional*, defaults to `3`): The output dimension of the tensor. If `3`, the tensor is
                reshaped to `[batch_size * heads, seq_len, dim // heads]`.

        Returns:
            `torch.Tensor`: The reshaped tensor.
        """
Patrick von Platen's avatar
Patrick von Platen committed
563
        head_size = self.heads
564
565
566
567
568
569
        if tensor.ndim == 3:
            batch_size, seq_len, dim = tensor.shape
            extra_dim = 1
        else:
            batch_size, extra_dim, seq_len, dim = tensor.shape
        tensor = tensor.reshape(batch_size, seq_len * extra_dim, head_size, dim // head_size)
570
571
572
        tensor = tensor.permute(0, 2, 1, 3)

        if out_dim == 3:
573
            tensor = tensor.reshape(batch_size * head_size, seq_len * extra_dim, dim // head_size)
574

Patrick von Platen's avatar
Patrick von Platen committed
575
576
        return tensor

577
578
579
580
581
582
583
584
585
586
587
588
589
590
    def get_attention_scores(
        self, query: torch.Tensor, key: torch.Tensor, attention_mask: torch.Tensor = None
    ) -> torch.Tensor:
        r"""
        Compute the attention scores.

        Args:
            query (`torch.Tensor`): The query tensor.
            key (`torch.Tensor`): The key tensor.
            attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied.

        Returns:
            `torch.Tensor`: The attention probabilities/scores.
        """
Patrick von Platen's avatar
Patrick von Platen committed
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
        dtype = query.dtype
        if self.upcast_attention:
            query = query.float()
            key = key.float()

        if attention_mask is None:
            baddbmm_input = torch.empty(
                query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device
            )
            beta = 0
        else:
            baddbmm_input = attention_mask
            beta = 1

        attention_scores = torch.baddbmm(
            baddbmm_input,
            query,
            key.transpose(-1, -2),
            beta=beta,
            alpha=self.scale,
        )
612
        del baddbmm_input
Patrick von Platen's avatar
Patrick von Platen committed
613
614
615
616
617

        if self.upcast_softmax:
            attention_scores = attention_scores.float()

        attention_probs = attention_scores.softmax(dim=-1)
618
619
        del attention_scores

Patrick von Platen's avatar
Patrick von Platen committed
620
621
622
623
        attention_probs = attention_probs.to(dtype)

        return attention_probs

624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
    def prepare_attention_mask(
        self, attention_mask: torch.Tensor, target_length: int, batch_size: int, out_dim: int = 3
    ) -> torch.Tensor:
        r"""
        Prepare the attention mask for the attention computation.

        Args:
            attention_mask (`torch.Tensor`):
                The attention mask to prepare.
            target_length (`int`):
                The target length of the attention mask. This is the length of the attention mask after padding.
            batch_size (`int`):
                The batch size, which is used to repeat the attention mask.
            out_dim (`int`, *optional*, defaults to `3`):
                The output dimension of the attention mask. Can be either `3` or `4`.

        Returns:
            `torch.Tensor`: The prepared attention mask.
        """
Patrick von Platen's avatar
Patrick von Platen committed
643
644
645
646
        head_size = self.heads
        if attention_mask is None:
            return attention_mask

647
        current_length: int = attention_mask.shape[-1]
648
        if current_length != target_length:
Patrick von Platen's avatar
Patrick von Platen committed
649
650
651
652
653
654
655
            if attention_mask.device.type == "mps":
                # HACK: MPS: Does not support padding by greater than dimension of input tensor.
                # Instead, we can manually construct the padding tensor.
                padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length)
                padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device)
                attention_mask = torch.cat([attention_mask, padding], dim=2)
            else:
656
657
658
659
                # TODO: for pipelines such as stable-diffusion, padding cross-attn mask:
                #       we want to instead pad by (0, remaining_length), where remaining_length is:
                #       remaining_length: int = target_length - current_length
                # TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding
Patrick von Platen's avatar
Patrick von Platen committed
660
661
                attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)

662
663
664
665
666
667
668
        if out_dim == 3:
            if attention_mask.shape[0] < batch_size * head_size:
                attention_mask = attention_mask.repeat_interleave(head_size, dim=0)
        elif out_dim == 4:
            attention_mask = attention_mask.unsqueeze(1)
            attention_mask = attention_mask.repeat_interleave(head_size, dim=1)

Patrick von Platen's avatar
Patrick von Platen committed
669
670
        return attention_mask

671
672
673
674
675
676
677
678
679
680
681
    def norm_encoder_hidden_states(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
        r"""
        Normalize the encoder hidden states. Requires `self.norm_cross` to be specified when constructing the
        `Attention` class.

        Args:
            encoder_hidden_states (`torch.Tensor`): Hidden states of the encoder.

        Returns:
            `torch.Tensor`: The normalized encoder hidden states.
        """
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
        assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states"

        if isinstance(self.norm_cross, nn.LayerNorm):
            encoder_hidden_states = self.norm_cross(encoder_hidden_states)
        elif isinstance(self.norm_cross, nn.GroupNorm):
            # Group norm norms along the channels dimension and expects
            # input to be in the shape of (N, C, *). In this case, we want
            # to norm along the hidden dimension, so we need to move
            # (batch_size, sequence_length, hidden_size) ->
            # (batch_size, hidden_size, sequence_length)
            encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
            encoder_hidden_states = self.norm_cross(encoder_hidden_states)
            encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
        else:
            assert False

        return encoder_hidden_states

700
701
702
703
704
    @torch.no_grad()
    def fuse_projections(self, fuse=True):
        device = self.to_q.weight.data.device
        dtype = self.to_q.weight.data.dtype

705
        if not self.is_cross_attention:
706
707
708
709
710
711
            # fetch weight matrices.
            concatenated_weights = torch.cat([self.to_q.weight.data, self.to_k.weight.data, self.to_v.weight.data])
            in_features = concatenated_weights.shape[1]
            out_features = concatenated_weights.shape[0]

            # create a new single projection layer and copy over the weights.
712
            self.to_qkv = self.linear_cls(in_features, out_features, bias=self.use_bias, device=device, dtype=dtype)
713
            self.to_qkv.weight.copy_(concatenated_weights)
714
715
716
            if self.use_bias:
                concatenated_bias = torch.cat([self.to_q.bias.data, self.to_k.bias.data, self.to_v.bias.data])
                self.to_qkv.bias.copy_(concatenated_bias)
717
718
719
720
721
722

        else:
            concatenated_weights = torch.cat([self.to_k.weight.data, self.to_v.weight.data])
            in_features = concatenated_weights.shape[1]
            out_features = concatenated_weights.shape[0]

723
            self.to_kv = self.linear_cls(in_features, out_features, bias=self.use_bias, device=device, dtype=dtype)
724
            self.to_kv.weight.copy_(concatenated_weights)
725
726
727
            if self.use_bias:
                concatenated_bias = torch.cat([self.to_k.bias.data, self.to_v.bias.data])
                self.to_kv.bias.copy_(concatenated_bias)
728
729
730

        self.fused_projections = fuse

Patrick von Platen's avatar
Patrick von Platen committed
731
732

class AttnProcessor:
733
734
735
736
    r"""
    Default processor for performing attention-related computations.
    """

Patrick von Platen's avatar
Patrick von Platen committed
737
738
739
    def __call__(
        self,
        attn: Attention,
740
741
742
743
744
745
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        temb: Optional[torch.FloatTensor] = None,
        scale: float = 1.0,
    ) -> torch.Tensor:
746
747
        residual = hidden_states

748
749
        args = () if USE_PEFT_BACKEND else (scale,)

YiYi Xu's avatar
YiYi Xu committed
750
751
752
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

753
754
755
756
757
758
        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

Patrick von Platen's avatar
Patrick von Platen committed
759
760
761
762
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
763
764
765
766

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

767
        query = attn.to_q(hidden_states, *args)
Patrick von Platen's avatar
Patrick von Platen committed
768
769
770

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
771
772
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
773

774
775
        key = attn.to_k(encoder_hidden_states, *args)
        value = attn.to_v(encoder_hidden_states, *args)
776

Patrick von Platen's avatar
Patrick von Platen committed
777
778
779
780
781
782
783
784
785
        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
786
        hidden_states = attn.to_out[0](hidden_states, *args)
Patrick von Platen's avatar
Patrick von Platen committed
787
788
789
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

790
791
792
793
794
795
796
797
        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

Patrick von Platen's avatar
Patrick von Platen committed
798
799
800
        return hidden_states


801
class CustomDiffusionAttnProcessor(nn.Module):
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
    r"""
    Processor for implementing attention for the Custom Diffusion method.

    Args:
        train_kv (`bool`, defaults to `True`):
            Whether to newly train the key and value matrices corresponding to the text features.
        train_q_out (`bool`, defaults to `True`):
            Whether to newly train query matrices corresponding to the latent image features.
        hidden_size (`int`, *optional*, defaults to `None`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`, *optional*, defaults to `None`):
            The number of channels in the `encoder_hidden_states`.
        out_bias (`bool`, defaults to `True`):
            Whether to include the bias parameter in `train_q_out`.
        dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability to use.
    """

820
821
    def __init__(
        self,
822
823
824
825
826
827
        train_kv: bool = True,
        train_q_out: bool = True,
        hidden_size: Optional[int] = None,
        cross_attention_dim: Optional[int] = None,
        out_bias: bool = True,
        dropout: float = 0.0,
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
    ):
        super().__init__()
        self.train_kv = train_kv
        self.train_q_out = train_q_out

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim

        # `_custom_diffusion` id for easy serialization and loading.
        if self.train_kv:
            self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
            self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
        if self.train_q_out:
            self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False)
            self.to_out_custom_diffusion = nn.ModuleList([])
            self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias))
            self.to_out_custom_diffusion.append(nn.Dropout(dropout))

846
847
848
849
850
851
852
    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.Tensor:
853
854
855
        batch_size, sequence_length, _ = hidden_states.shape
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
        if self.train_q_out:
856
            query = self.to_q_custom_diffusion(hidden_states).to(attn.to_q.weight.dtype)
857
        else:
858
            query = attn.to_q(hidden_states.to(attn.to_q.weight.dtype))
859
860
861
862
863
864
865
866
867
868

        if encoder_hidden_states is None:
            crossattn = False
            encoder_hidden_states = hidden_states
        else:
            crossattn = True
            if attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        if self.train_kv:
869
870
871
872
            key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype))
            value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype))
            key = key.to(attn.to_q.weight.dtype)
            value = value.to(attn.to_q.weight.dtype)
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
        else:
            key = attn.to_k(encoder_hidden_states)
            value = attn.to_v(encoder_hidden_states)

        if crossattn:
            detach = torch.ones_like(key)
            detach[:, :1, :] = detach[:, :1, :] * 0.0
            key = detach * key + (1 - detach) * key.detach()
            value = detach * value + (1 - detach) * value.detach()

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        if self.train_q_out:
            # linear proj
            hidden_states = self.to_out_custom_diffusion[0](hidden_states)
            # dropout
            hidden_states = self.to_out_custom_diffusion[1](hidden_states)
        else:
            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
905
class AttnAddedKVProcessor:
906
907
908
909
910
    r"""
    Processor for performing attention-related computations with extra learnable key and value matrices for the text
    encoder.
    """

911
912
913
914
915
916
917
918
    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        scale: float = 1.0,
    ) -> torch.Tensor:
Patrick von Platen's avatar
Patrick von Platen committed
919
        residual = hidden_states
920
921
922

        args = () if USE_PEFT_BACKEND else (scale,)

Patrick von Platen's avatar
Patrick von Platen committed
923
924
925
926
927
        hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
        batch_size, sequence_length, _ = hidden_states.shape

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

928
929
930
931
932
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

Patrick von Platen's avatar
Patrick von Platen committed
933
934
        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

935
        query = attn.to_q(hidden_states, *args)
Patrick von Platen's avatar
Patrick von Platen committed
936
937
        query = attn.head_to_batch_dim(query)

938
939
        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states, *args)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states, *args)
Patrick von Platen's avatar
Patrick von Platen committed
940
941
942
        encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
        encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)

943
        if not attn.only_cross_attention:
944
945
            key = attn.to_k(hidden_states, *args)
            value = attn.to_v(hidden_states, *args)
946
947
948
949
950
951
952
            key = attn.head_to_batch_dim(key)
            value = attn.head_to_batch_dim(value)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
        else:
            key = encoder_hidden_states_key_proj
            value = encoder_hidden_states_value_proj
Patrick von Platen's avatar
Patrick von Platen committed
953
954
955
956
957
958

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
959
        hidden_states = attn.to_out[0](hidden_states, *args)
Patrick von Platen's avatar
Patrick von Platen committed
960
961
962
963
964
965
966
967
968
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
        hidden_states = hidden_states + residual

        return hidden_states


969
class AttnAddedKVProcessor2_0:
970
971
972
973
974
    r"""
    Processor for performing scaled dot-product attention (enabled by default if you're using PyTorch 2.0), with extra
    learnable key and value matrices for the text encoder.
    """

975
976
977
978
979
980
    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "AttnAddedKVProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

981
982
983
984
985
986
987
988
    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        scale: float = 1.0,
    ) -> torch.Tensor:
989
        residual = hidden_states
990
991
992

        args = () if USE_PEFT_BACKEND else (scale,)

993
994
995
996
997
998
999
1000
1001
1002
1003
1004
        hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
        batch_size, sequence_length, _ = hidden_states.shape

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size, out_dim=4)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

1005
        query = attn.to_q(hidden_states, *args)
1006
1007
1008
1009
1010
1011
1012
1013
        query = attn.head_to_batch_dim(query, out_dim=4)

        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
        encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj, out_dim=4)
        encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj, out_dim=4)

        if not attn.only_cross_attention:
1014
1015
            key = attn.to_k(hidden_states, *args)
            value = attn.to_v(hidden_states, *args)
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
            key = attn.head_to_batch_dim(key, out_dim=4)
            value = attn.head_to_batch_dim(value, out_dim=4)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
        else:
            key = encoder_hidden_states_key_proj
            value = encoder_hidden_states_value_proj

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, residual.shape[1])

        # linear proj
1032
        hidden_states = attn.to_out[0](hidden_states, *args)
Will Berman's avatar
Will Berman committed
1033
1034
1035
1036
1037
1038
1039
1040
1041
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
        hidden_states = hidden_states + residual

        return hidden_states


1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
class XFormersAttnAddedKVProcessor:
    r"""
    Processor for implementing memory efficient attention using xFormers.

    Args:
        attention_op (`Callable`, *optional*, defaults to `None`):
            The base
            [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to
            use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best
            operator.
    """

    def __init__(self, attention_op: Optional[Callable] = None):
        self.attention_op = attention_op

1057
1058
1059
1060
1061
1062
1063
    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.Tensor:
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
        residual = hidden_states
        hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
        batch_size, sequence_length, _ = hidden_states.shape

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)
        query = attn.head_to_batch_dim(query)

        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
        encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
        encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)

        if not attn.only_cross_attention:
            key = attn.to_k(hidden_states)
            value = attn.to_v(hidden_states)
            key = attn.head_to_batch_dim(key)
            value = attn.head_to_batch_dim(value)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
        else:
            key = encoder_hidden_states_key_proj
            value = encoder_hidden_states_value_proj

        hidden_states = xformers.ops.memory_efficient_attention(
            query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
        )
        hidden_states = hidden_states.to(query.dtype)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
        hidden_states = hidden_states + residual

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1113
class XFormersAttnProcessor:
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
    r"""
    Processor for implementing memory efficient attention using xFormers.

    Args:
        attention_op (`Callable`, *optional*, defaults to `None`):
            The base
            [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to
            use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best
            operator.
    """

Patrick von Platen's avatar
Patrick von Platen committed
1125
1126
1127
    def __init__(self, attention_op: Optional[Callable] = None):
        self.attention_op = attention_op

1128
1129
1130
1131
1132
1133
    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
1134
        temb: Optional[torch.FloatTensor] = None,
1135
        scale: float = 1.0,
1136
    ) -> torch.FloatTensor:
1137
1138
        residual = hidden_states

1139
1140
        args = () if USE_PEFT_BACKEND else (scale,)

1141
1142
1143
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

1144
1145
1146
1147
1148
1149
        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

1150
        batch_size, key_tokens, _ = (
Patrick von Platen's avatar
Patrick von Platen committed
1151
1152
1153
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
        attention_mask = attn.prepare_attention_mask(attention_mask, key_tokens, batch_size)
        if attention_mask is not None:
            # expand our mask's singleton query_tokens dimension:
            #   [batch*heads,            1, key_tokens] ->
            #   [batch*heads, query_tokens, key_tokens]
            # so that it can be added as a bias onto the attention scores that xformers computes:
            #   [batch*heads, query_tokens, key_tokens]
            # we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
            _, query_tokens, _ = hidden_states.shape
            attention_mask = attention_mask.expand(-1, query_tokens, -1)
Patrick von Platen's avatar
Patrick von Platen committed
1164

1165
1166
1167
        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

1168
        query = attn.to_q(hidden_states, *args)
Patrick von Platen's avatar
Patrick von Platen committed
1169
1170
1171

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
1172
1173
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
1174

1175
1176
        key = attn.to_k(encoder_hidden_states, *args)
        value = attn.to_v(encoder_hidden_states, *args)
Patrick von Platen's avatar
Patrick von Platen committed
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188

        query = attn.head_to_batch_dim(query).contiguous()
        key = attn.head_to_batch_dim(key).contiguous()
        value = attn.head_to_batch_dim(value).contiguous()

        hidden_states = xformers.ops.memory_efficient_attention(
            query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
        )
        hidden_states = hidden_states.to(query.dtype)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
1189
        hidden_states = attn.to_out[0](hidden_states, *args)
Patrick von Platen's avatar
Patrick von Platen committed
1190
1191
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
1192
1193
1194
1195
1196
1197
1198
1199
1200

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

Patrick von Platen's avatar
Patrick von Platen committed
1201
1202
1203
1204
        return hidden_states


class AttnProcessor2_0:
1205
1206
1207
1208
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
    """

Patrick von Platen's avatar
Patrick von Platen committed
1209
1210
1211
1212
    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

YiYi Xu's avatar
YiYi Xu committed
1213
1214
1215
    def __call__(
        self,
        attn: Attention,
1216
1217
1218
1219
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        temb: Optional[torch.FloatTensor] = None,
1220
        scale: float = 1.0,
1221
    ) -> torch.FloatTensor:
1222
        residual = hidden_states
YiYi Xu's avatar
YiYi Xu committed
1223
1224
1225
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

1226
1227
1228
1229
1230
1231
        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

Patrick von Platen's avatar
Patrick von Platen committed
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

1242
1243
1244
        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

1245
1246
        args = () if USE_PEFT_BACKEND else (scale,)
        query = attn.to_q(hidden_states, *args)
Patrick von Platen's avatar
Patrick von Platen committed
1247
1248
1249

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
1250
1251
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
1252

1253
1254
        key = attn.to_k(encoder_hidden_states, *args)
        value = attn.to_v(encoder_hidden_states, *args)
Patrick von Platen's avatar
Patrick von Platen committed
1255

1256
        inner_dim = key.shape[-1]
Patrick von Platen's avatar
Patrick von Platen committed
1257
        head_dim = inner_dim // attn.heads
1258

Patrick von Platen's avatar
Patrick von Platen committed
1259
        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
1260

Patrick von Platen's avatar
Patrick von Platen committed
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
1274
        hidden_states = attn.to_out[0](hidden_states, *args)
Patrick von Platen's avatar
Patrick von Platen committed
1275
1276
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
1277
1278
1279
1280
1281
1282
1283
1284
1285

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

Patrick von Platen's avatar
Patrick von Platen committed
1286
1287
1288
        return hidden_states


1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
class FusedAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
    It uses fused projection layers. For self-attention modules, all projection matrices (i.e., query,
    key, value) are fused. For cross-attention modules, key and value projection matrices are fused.

    <Tip warning={true}>

    This API is currently 🧪 experimental in nature and can change in future.

    </Tip>
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "FusedAttnProcessor2_0 requires at least PyTorch 2.0, to use it. Please upgrade PyTorch to > 2.0."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        temb: Optional[torch.FloatTensor] = None,
        scale: float = 1.0,
    ) -> torch.FloatTensor:
        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        args = () if USE_PEFT_BACKEND else (scale,)
        if encoder_hidden_states is None:
            qkv = attn.to_qkv(hidden_states, *args)
            split_size = qkv.shape[-1] // 3
            query, key, value = torch.split(qkv, split_size, dim=-1)
        else:
            if attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
            query = attn.to_q(hidden_states, *args)

            kv = attn.to_kv(encoder_hidden_states, *args)
            split_size = kv.shape[-1] // 2
            key, value = torch.split(kv, split_size, dim=-1)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states, *args)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


1386
class CustomDiffusionXFormersAttnProcessor(nn.Module):
1387
    r"""
1388
    Processor for implementing memory efficient attention using xFormers for the Custom Diffusion method.
1389
1390

    Args:
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
    train_kv (`bool`, defaults to `True`):
        Whether to newly train the key and value matrices corresponding to the text features.
    train_q_out (`bool`, defaults to `True`):
        Whether to newly train query matrices corresponding to the latent image features.
    hidden_size (`int`, *optional*, defaults to `None`):
        The hidden size of the attention layer.
    cross_attention_dim (`int`, *optional*, defaults to `None`):
        The number of channels in the `encoder_hidden_states`.
    out_bias (`bool`, defaults to `True`):
        Whether to include the bias parameter in `train_q_out`.
    dropout (`float`, *optional*, defaults to 0.0):
        The dropout probability to use.
    attention_op (`Callable`, *optional*, defaults to `None`):
        The base
        [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to use
        as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best operator.
1407
1408
    """

1409
    def __init__(
1410
        self,
1411
1412
1413
1414
1415
1416
        train_kv: bool = True,
        train_q_out: bool = False,
        hidden_size: Optional[int] = None,
        cross_attention_dim: Optional[int] = None,
        out_bias: bool = True,
        dropout: float = 0.0,
1417
        attention_op: Optional[Callable] = None,
1418
    ):
Patrick von Platen's avatar
Patrick von Platen committed
1419
        super().__init__()
1420
1421
        self.train_kv = train_kv
        self.train_q_out = train_q_out
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.attention_op = attention_op

        # `_custom_diffusion` id for easy serialization and loading.
        if self.train_kv:
            self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
            self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
        if self.train_q_out:
            self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False)
            self.to_out_custom_diffusion = nn.ModuleList([])
            self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias))
            self.to_out_custom_diffusion.append(nn.Dropout(dropout))

1437
1438
1439
1440
1441
1442
1443
    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
1444
1445
1446
1447
1448
1449
1450
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        if self.train_q_out:
1451
            query = self.to_q_custom_diffusion(hidden_states).to(attn.to_q.weight.dtype)
1452
        else:
1453
            query = attn.to_q(hidden_states.to(attn.to_q.weight.dtype))
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463

        if encoder_hidden_states is None:
            crossattn = False
            encoder_hidden_states = hidden_states
        else:
            crossattn = True
            if attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        if self.train_kv:
1464
1465
1466
1467
            key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype))
            value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype))
            key = key.to(attn.to_q.weight.dtype)
            value = value.to(attn.to_q.weight.dtype)
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
        else:
            key = attn.to_k(encoder_hidden_states)
            value = attn.to_v(encoder_hidden_states)

        if crossattn:
            detach = torch.ones_like(key)
            detach[:, :1, :] = detach[:, :1, :] * 0.0
            key = detach * key + (1 - detach) * key.detach()
            value = detach * value + (1 - detach) * value.detach()

        query = attn.head_to_batch_dim(query).contiguous()
        key = attn.head_to_batch_dim(key).contiguous()
        value = attn.head_to_batch_dim(value).contiguous()

        hidden_states = xformers.ops.memory_efficient_attention(
            query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
        )
        hidden_states = hidden_states.to(query.dtype)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        if self.train_q_out:
            # linear proj
            hidden_states = self.to_out_custom_diffusion[0](hidden_states)
            # dropout
            hidden_states = self.to_out_custom_diffusion[1](hidden_states)
        else:
            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)
1498

1499
1500
1501
        return hidden_states


1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
class CustomDiffusionAttnProcessor2_0(nn.Module):
    r"""
    Processor for implementing attention for the Custom Diffusion method using PyTorch 2.0’s memory-efficient scaled
    dot-product attention.

    Args:
        train_kv (`bool`, defaults to `True`):
            Whether to newly train the key and value matrices corresponding to the text features.
        train_q_out (`bool`, defaults to `True`):
            Whether to newly train query matrices corresponding to the latent image features.
        hidden_size (`int`, *optional*, defaults to `None`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`, *optional*, defaults to `None`):
            The number of channels in the `encoder_hidden_states`.
        out_bias (`bool`, defaults to `True`):
            Whether to include the bias parameter in `train_q_out`.
        dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability to use.
    """

    def __init__(
        self,
1524
1525
1526
1527
1528
1529
        train_kv: bool = True,
        train_q_out: bool = True,
        hidden_size: Optional[int] = None,
        cross_attention_dim: Optional[int] = None,
        out_bias: bool = True,
        dropout: float = 0.0,
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
    ):
        super().__init__()
        self.train_kv = train_kv
        self.train_q_out = train_q_out

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim

        # `_custom_diffusion` id for easy serialization and loading.
        if self.train_kv:
            self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
            self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
        if self.train_q_out:
            self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False)
            self.to_out_custom_diffusion = nn.ModuleList([])
            self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias))
            self.to_out_custom_diffusion.append(nn.Dropout(dropout))

1548
1549
1550
1551
1552
1553
1554
    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
        batch_size, sequence_length, _ = hidden_states.shape
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
        if self.train_q_out:
            query = self.to_q_custom_diffusion(hidden_states)
        else:
            query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            crossattn = False
            encoder_hidden_states = hidden_states
        else:
            crossattn = True
            if attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        if self.train_kv:
1571
1572
1573
1574
1575
            key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype))
            value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype))
            key = key.to(attn.to_q.weight.dtype)
            value = value.to(attn.to_q.weight.dtype)

1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
        else:
            key = attn.to_k(encoder_hidden_states)
            value = attn.to_v(encoder_hidden_states)

        if crossattn:
            detach = torch.ones_like(key)
            detach[:, :1, :] = detach[:, :1, :] * 0.0
            key = detach * key + (1 - detach) * key.detach()
            value = detach * value + (1 - detach) * value.detach()

        inner_dim = hidden_states.shape[-1]

        head_dim = inner_dim // attn.heads
        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        if self.train_q_out:
            # linear proj
            hidden_states = self.to_out_custom_diffusion[0](hidden_states)
            # dropout
            hidden_states = self.to_out_custom_diffusion[1](hidden_states)
        else:
            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1616
class SlicedAttnProcessor:
1617
1618
1619
1620
1621
1622
1623
1624
1625
    r"""
    Processor for implementing sliced attention.

    Args:
        slice_size (`int`, *optional*):
            The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and
            `attention_head_dim` must be a multiple of the `slice_size`.
    """

1626
    def __init__(self, slice_size: int):
Patrick von Platen's avatar
Patrick von Platen committed
1627
1628
        self.slice_size = slice_size

1629
1630
1631
1632
1633
1634
1635
    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
1636
1637
1638
1639
1640
1641
1642
1643
        residual = hidden_states

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

Patrick von Platen's avatar
Patrick von Platen committed
1644
1645
1646
1647
1648
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

1649
1650
1651
        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

Patrick von Platen's avatar
Patrick von Platen committed
1652
1653
1654
1655
1656
1657
        query = attn.to_q(hidden_states)
        dim = query.shape[-1]
        query = attn.head_to_batch_dim(query)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
1658
1659
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        batch_size_attention, query_tokens, _ = query.shape
        hidden_states = torch.zeros(
            (batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype
        )

        for i in range(batch_size_attention // self.slice_size):
            start_idx = i * self.slice_size
            end_idx = (i + 1) * self.slice_size

            query_slice = query[start_idx:end_idx]
            key_slice = key[start_idx:end_idx]
            attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None

            attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)

            attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])

            hidden_states[start_idx:end_idx] = attn_slice

        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

1692
1693
1694
1695
1696
1697
1698
1699
        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

Patrick von Platen's avatar
Patrick von Platen committed
1700
1701
1702
1703
        return hidden_states


class SlicedAttnAddedKVProcessor:
1704
1705
1706
1707
1708
1709
1710
1711
1712
    r"""
    Processor for implementing sliced attention with extra learnable key and value matrices for the text encoder.

    Args:
        slice_size (`int`, *optional*):
            The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and
            `attention_head_dim` must be a multiple of the `slice_size`.
    """

Patrick von Platen's avatar
Patrick von Platen committed
1713
1714
1715
    def __init__(self, slice_size):
        self.slice_size = slice_size

1716
1717
1718
1719
1720
1721
1722
1723
    def __call__(
        self,
        attn: "Attention",
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        temb: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
Patrick von Platen's avatar
Patrick von Platen committed
1724
        residual = hidden_states
1725
1726
1727
1728

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

Patrick von Platen's avatar
Patrick von Platen committed
1729
1730
1731
1732
1733
1734
        hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)

        batch_size, sequence_length, _ = hidden_states.shape

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

1735
1736
1737
1738
1739
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

Patrick von Platen's avatar
Patrick von Platen committed
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)
        dim = query.shape[-1]
        query = attn.head_to_batch_dim(query)

        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

        encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
        encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)

1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
        if not attn.only_cross_attention:
            key = attn.to_k(hidden_states)
            value = attn.to_v(hidden_states)
            key = attn.head_to_batch_dim(key)
            value = attn.head_to_batch_dim(value)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
        else:
            key = encoder_hidden_states_key_proj
            value = encoder_hidden_states_value_proj
Patrick von Platen's avatar
Patrick von Platen committed
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794

        batch_size_attention, query_tokens, _ = query.shape
        hidden_states = torch.zeros(
            (batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype
        )

        for i in range(batch_size_attention // self.slice_size):
            start_idx = i * self.slice_size
            end_idx = (i + 1) * self.slice_size

            query_slice = query[start_idx:end_idx]
            key_slice = key[start_idx:end_idx]
            attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None

            attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)

            attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])

            hidden_states[start_idx:end_idx] = attn_slice

        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
        hidden_states = hidden_states + residual

        return hidden_states


YiYi Xu's avatar
YiYi Xu committed
1795
1796
class SpatialNorm(nn.Module):
    """
1797
1798
1799
1800
1801
1802
1803
    Spatially conditioned normalization as defined in https://arxiv.org/abs/2209.09002.

    Args:
        f_channels (`int`):
            The number of channels for input to group normalization layer, and output of the spatial norm layer.
        zq_channels (`int`):
            The number of channels for the quantized vector as described in the paper.
YiYi Xu's avatar
YiYi Xu committed
1804
1805
1806
1807
    """

    def __init__(
        self,
1808
1809
        f_channels: int,
        zq_channels: int,
YiYi Xu's avatar
YiYi Xu committed
1810
1811
1812
1813
1814
1815
    ):
        super().__init__()
        self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=32, eps=1e-6, affine=True)
        self.conv_y = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0)
        self.conv_b = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0)

1816
    def forward(self, f: torch.FloatTensor, zq: torch.FloatTensor) -> torch.FloatTensor:
YiYi Xu's avatar
YiYi Xu committed
1817
1818
1819
1820
1821
        f_size = f.shape[-2:]
        zq = F.interpolate(zq, size=f_size, mode="nearest")
        norm_f = self.norm_layer(f)
        new_f = norm_f * self.conv_y(zq) + self.conv_b(zq)
        return new_f
1822
1823
1824


class LoRAAttnProcessor(nn.Module):
1825
1826
1827
1828
1829
1830
1831
1832
    def __init__(
        self,
        hidden_size: int,
        cross_attention_dim: Optional[int] = None,
        rank: int = 4,
        network_alpha: Optional[int] = None,
        **kwargs,
    ):
1833
1834
1835
        deprecation_message = "Using LoRAAttnProcessor is deprecated. Please use the PEFT backend for all things LoRA. You can install PEFT by running `pip install peft`."
        deprecate("LoRAAttnProcessor", "0.30.0", deprecation_message, standard_warn=False)

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
        super().__init__()

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.rank = rank

        q_rank = kwargs.pop("q_rank", None)
        q_hidden_size = kwargs.pop("q_hidden_size", None)
        q_rank = q_rank if q_rank is not None else rank
        q_hidden_size = q_hidden_size if q_hidden_size is not None else hidden_size

        v_rank = kwargs.pop("v_rank", None)
        v_hidden_size = kwargs.pop("v_hidden_size", None)
        v_rank = v_rank if v_rank is not None else rank
        v_hidden_size = v_hidden_size if v_hidden_size is not None else hidden_size

        out_rank = kwargs.pop("out_rank", None)
        out_hidden_size = kwargs.pop("out_hidden_size", None)
        out_rank = out_rank if out_rank is not None else rank
        out_hidden_size = out_hidden_size if out_hidden_size is not None else hidden_size

        self.to_q_lora = LoRALinearLayer(q_hidden_size, q_hidden_size, q_rank, network_alpha)
        self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
        self.to_v_lora = LoRALinearLayer(cross_attention_dim or v_hidden_size, v_hidden_size, v_rank, network_alpha)
        self.to_out_lora = LoRALinearLayer(out_hidden_size, out_hidden_size, out_rank, network_alpha)

1862
    def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
        self_cls_name = self.__class__.__name__
        deprecate(
            self_cls_name,
            "0.26.0",
            (
                f"Make sure use {self_cls_name[4:]} instead by setting"
                "LoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using"
                " `LoraLoaderMixin.load_lora_weights`"
            ),
        )
        attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device)
        attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device)
        attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device)
        attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device)

        attn._modules.pop("processor")
        attn.processor = AttnProcessor()
        return attn.processor(attn, hidden_states, *args, **kwargs)


class LoRAAttnProcessor2_0(nn.Module):
1884
1885
1886
1887
1888
1889
1890
1891
    def __init__(
        self,
        hidden_size: int,
        cross_attention_dim: Optional[int] = None,
        rank: int = 4,
        network_alpha: Optional[int] = None,
        **kwargs,
    ):
1892
1893
1894
        deprecation_message = "Using LoRAAttnProcessor is deprecated. Please use the PEFT backend for all things LoRA. You can install PEFT by running `pip install peft`."
        deprecate("LoRAAttnProcessor2_0", "0.30.0", deprecation_message, standard_warn=False)

1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
        super().__init__()
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.rank = rank

        q_rank = kwargs.pop("q_rank", None)
        q_hidden_size = kwargs.pop("q_hidden_size", None)
        q_rank = q_rank if q_rank is not None else rank
        q_hidden_size = q_hidden_size if q_hidden_size is not None else hidden_size

        v_rank = kwargs.pop("v_rank", None)
        v_hidden_size = kwargs.pop("v_hidden_size", None)
        v_rank = v_rank if v_rank is not None else rank
        v_hidden_size = v_hidden_size if v_hidden_size is not None else hidden_size

        out_rank = kwargs.pop("out_rank", None)
        out_hidden_size = kwargs.pop("out_hidden_size", None)
        out_rank = out_rank if out_rank is not None else rank
        out_hidden_size = out_hidden_size if out_hidden_size is not None else hidden_size

        self.to_q_lora = LoRALinearLayer(q_hidden_size, q_hidden_size, q_rank, network_alpha)
        self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
        self.to_v_lora = LoRALinearLayer(cross_attention_dim or v_hidden_size, v_hidden_size, v_rank, network_alpha)
        self.to_out_lora = LoRALinearLayer(out_hidden_size, out_hidden_size, out_rank, network_alpha)

1923
    def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
        self_cls_name = self.__class__.__name__
        deprecate(
            self_cls_name,
            "0.26.0",
            (
                f"Make sure use {self_cls_name[4:]} instead by setting"
                "LoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using"
                " `LoraLoaderMixin.load_lora_weights`"
            ),
        )
        attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device)
        attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device)
        attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device)
        attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device)

        attn._modules.pop("processor")
        attn.processor = AttnProcessor2_0()
        return attn.processor(attn, hidden_states, *args, **kwargs)


class LoRAXFormersAttnProcessor(nn.Module):
    r"""
    Processor for implementing the LoRA attention mechanism with memory efficient attention using xFormers.

    Args:
        hidden_size (`int`, *optional*):
            The hidden size of the attention layer.
        cross_attention_dim (`int`, *optional*):
            The number of channels in the `encoder_hidden_states`.
        rank (`int`, defaults to 4):
            The dimension of the LoRA update matrices.
        attention_op (`Callable`, *optional*, defaults to `None`):
            The base
            [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to
            use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best
            operator.
        network_alpha (`int`, *optional*):
            Equivalent to `alpha` but it's usage is specific to Kohya (A1111) style LoRAs.
1962
1963
        kwargs (`dict`):
            Additional keyword arguments to pass to the `LoRALinearLayer` layers.
1964
1965
1966
1967
    """

    def __init__(
        self,
1968
1969
1970
        hidden_size: int,
        cross_attention_dim: int,
        rank: int = 4,
1971
        attention_op: Optional[Callable] = None,
1972
        network_alpha: Optional[int] = None,
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
        **kwargs,
    ):
        super().__init__()

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.rank = rank
        self.attention_op = attention_op

        q_rank = kwargs.pop("q_rank", None)
        q_hidden_size = kwargs.pop("q_hidden_size", None)
        q_rank = q_rank if q_rank is not None else rank
        q_hidden_size = q_hidden_size if q_hidden_size is not None else hidden_size

        v_rank = kwargs.pop("v_rank", None)
        v_hidden_size = kwargs.pop("v_hidden_size", None)
        v_rank = v_rank if v_rank is not None else rank
        v_hidden_size = v_hidden_size if v_hidden_size is not None else hidden_size

        out_rank = kwargs.pop("out_rank", None)
        out_hidden_size = kwargs.pop("out_hidden_size", None)
        out_rank = out_rank if out_rank is not None else rank
        out_hidden_size = out_hidden_size if out_hidden_size is not None else hidden_size

        self.to_q_lora = LoRALinearLayer(q_hidden_size, q_hidden_size, q_rank, network_alpha)
        self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
        self.to_v_lora = LoRALinearLayer(cross_attention_dim or v_hidden_size, v_hidden_size, v_rank, network_alpha)
        self.to_out_lora = LoRALinearLayer(out_hidden_size, out_hidden_size, out_rank, network_alpha)

2002
    def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
2003
2004
2005
2006
2007
2008
        self_cls_name = self.__class__.__name__
        deprecate(
            self_cls_name,
            "0.26.0",
            (
                f"Make sure use {self_cls_name[4:]} instead by setting"
2009
                "LoRA layers to `self.{to_q,to_k,to_v,add_k_proj,add_v_proj,to_out[0]}.lora_layer` respectively. This will be done automatically when using"
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
                " `LoraLoaderMixin.load_lora_weights`"
            ),
        )
        attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device)
        attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device)
        attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device)
        attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device)

        attn._modules.pop("processor")
        attn.processor = XFormersAttnProcessor()
        return attn.processor(attn, hidden_states, *args, **kwargs)


class LoRAAttnAddedKVProcessor(nn.Module):
    r"""
    Processor for implementing the LoRA attention mechanism with extra learnable key and value matrices for the text
    encoder.

    Args:
        hidden_size (`int`, *optional*):
            The hidden size of the attention layer.
        cross_attention_dim (`int`, *optional*, defaults to `None`):
            The number of channels in the `encoder_hidden_states`.
        rank (`int`, defaults to 4):
            The dimension of the LoRA update matrices.
2035
2036
2037
2038
        network_alpha (`int`, *optional*):
            Equivalent to `alpha` but it's usage is specific to Kohya (A1111) style LoRAs.
        kwargs (`dict`):
            Additional keyword arguments to pass to the `LoRALinearLayer` layers.
2039
2040
    """

2041
2042
2043
2044
2045
2046
2047
    def __init__(
        self,
        hidden_size: int,
        cross_attention_dim: Optional[int] = None,
        rank: int = 4,
        network_alpha: Optional[int] = None,
    ):
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
        super().__init__()

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.rank = rank

        self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
        self.add_k_proj_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
        self.add_v_proj_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
        self.to_k_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
        self.to_v_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
        self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)

2061
    def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
2062
2063
2064
2065
2066
2067
        self_cls_name = self.__class__.__name__
        deprecate(
            self_cls_name,
            "0.26.0",
            (
                f"Make sure use {self_cls_name[4:]} instead by setting"
2068
                "LoRA layers to `self.{to_q,to_k,to_v,add_k_proj,add_v_proj,to_out[0]}.lora_layer` respectively. This will be done automatically when using"
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
                " `LoraLoaderMixin.load_lora_weights`"
            ),
        )
        attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device)
        attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device)
        attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device)
        attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device)

        attn._modules.pop("processor")
        attn.processor = AttnAddedKVProcessor()
        return attn.processor(attn, hidden_states, *args, **kwargs)


2082
2083
class IPAdapterAttnProcessor(nn.Module):
    r"""
2084
    Attention processor for Multiple IP-Adapater.
2085
2086
2087
2088
2089
2090

    Args:
        hidden_size (`int`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`):
            The number of channels in the `encoder_hidden_states`.
2091
        num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`):
2092
            The context length of the image features.
2093
        scale (`float` or List[`float`], defaults to 1.0):
2094
2095
2096
            the weight scale of image prompt.
    """

2097
    def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0):
2098
2099
2100
2101
        super().__init__()

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
2102
2103
2104

        if not isinstance(num_tokens, (tuple, list)):
            num_tokens = [num_tokens]
2105
        self.num_tokens = num_tokens
2106
2107
2108
2109
2110

        if not isinstance(scale, list):
            scale = [scale] * len(num_tokens)
        if len(scale) != len(num_tokens):
            raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.")
2111
2112
        self.scale = scale

2113
2114
2115
2116
2117
2118
        self.to_k_ip = nn.ModuleList(
            [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]
        )
        self.to_v_ip = nn.ModuleList(
            [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]
        )
2119
2120
2121

    def __call__(
        self,
2122
2123
2124
2125
2126
2127
2128
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        temb: Optional[torch.FloatTensor] = None,
        scale: float = 1.0,
        ip_adapter_masks: Optional[torch.FloatTensor] = None,
2129
2130
2131
    ):
        residual = hidden_states

2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
        # separate ip_hidden_states from encoder_hidden_states
        if encoder_hidden_states is not None:
            if isinstance(encoder_hidden_states, tuple):
                encoder_hidden_states, ip_hidden_states = encoder_hidden_states
            else:
                deprecation_message = (
                    "You have passed a tensor as `encoder_hidden_states`.This is deprecated and will be removed in a future release."
                    " Please make sure to update your script to pass `encoder_hidden_states` as a tuple to supress this warning."
                )
                deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False)
                end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0]
                encoder_hidden_states, ip_hidden_states = (
                    encoder_hidden_states[:, :end_pos, :],
                    [encoder_hidden_states[:, end_pos:, :]],
                )

2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
        if ip_adapter_masks is not None:
            if not isinstance(ip_adapter_masks, torch.Tensor) or ip_adapter_masks.ndim != 4:
                raise ValueError(
                    " ip_adapter_mask should be a tensor with shape [num_ip_adapter, 1, height, width]."
                    " Please use `IPAdapterMaskProcessor` to preprocess your mask"
                )
            if len(ip_adapter_masks) != len(self.scale):
                raise ValueError(
                    f"Number of ip_adapter_masks ({len(ip_adapter_masks)}) must match number of IP-Adapters ({len(self.scale)})"
                )
        else:
            ip_adapter_masks = [None] * len(self.scale)

2196
        # for ip-adapter
2197
2198
        for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip(
            ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks
2199
2200
2201
        ):
            ip_key = to_k_ip(current_ip_hidden_states)
            ip_value = to_v_ip(current_ip_hidden_states)
2202

2203
2204
            ip_key = attn.head_to_batch_dim(ip_key)
            ip_value = attn.head_to_batch_dim(ip_value)
2205

2206
2207
2208
            ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
            current_ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
            current_ip_hidden_states = attn.batch_to_head_dim(current_ip_hidden_states)
2209

2210
2211
2212
2213
2214
2215
2216
2217
2218
            if mask is not None:
                mask_downsample = IPAdapterMaskProcessor.downsample(
                    mask, batch_size, current_ip_hidden_states.shape[1], current_ip_hidden_states.shape[2]
                )

                mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device)

                current_ip_hidden_states = current_ip_hidden_states * mask_downsample

2219
            hidden_states = hidden_states + scale * current_ip_hidden_states
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class IPAdapterAttnProcessor2_0(torch.nn.Module):
    r"""
    Attention processor for IP-Adapater for PyTorch 2.0.

    Args:
        hidden_size (`int`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`):
            The number of channels in the `encoder_hidden_states`.
2246
        num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`):
2247
            The context length of the image features.
2248
        scale (`float` or `List[float]`, defaults to 1.0):
2249
2250
2251
            the weight scale of image prompt.
    """

2252
    def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0):
2253
2254
2255
2256
2257
2258
2259
2260
2261
        super().__init__()

        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                f"{self.__class__.__name__} requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
2262
2263
2264

        if not isinstance(num_tokens, (tuple, list)):
            num_tokens = [num_tokens]
2265
        self.num_tokens = num_tokens
2266
2267
2268
2269
2270

        if not isinstance(scale, list):
            scale = [scale] * len(num_tokens)
        if len(scale) != len(num_tokens):
            raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.")
2271
2272
        self.scale = scale

2273
2274
2275
2276
2277
2278
        self.to_k_ip = nn.ModuleList(
            [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]
        )
        self.to_v_ip = nn.ModuleList(
            [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]
        )
2279
2280
2281

    def __call__(
        self,
2282
2283
2284
2285
2286
2287
2288
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        temb: Optional[torch.FloatTensor] = None,
        scale: float = 1.0,
        ip_adapter_masks: Optional[torch.FloatTensor] = None,
2289
2290
2291
    ):
        residual = hidden_states

2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
        # separate ip_hidden_states from encoder_hidden_states
        if encoder_hidden_states is not None:
            if isinstance(encoder_hidden_states, tuple):
                encoder_hidden_states, ip_hidden_states = encoder_hidden_states
            else:
                deprecation_message = (
                    "You have passed a tensor as `encoder_hidden_states`.This is deprecated and will be removed in a future release."
                    " Please make sure to update your script to pass `encoder_hidden_states` as a tuple to supress this warning."
                )
                deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False)
                end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0]
                encoder_hidden_states, ip_hidden_states = (
                    encoder_hidden_states[:, :end_pos, :],
                    [encoder_hidden_states[:, end_pos:, :]],
                )

2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
        if ip_adapter_masks is not None:
            if not isinstance(ip_adapter_masks, torch.Tensor) or ip_adapter_masks.ndim != 4:
                raise ValueError(
                    " ip_adapter_mask should be a tensor with shape [num_ip_adapter, 1, height, width]."
                    " Please use `IPAdapterMaskProcessor` to preprocess your mask"
                )
            if len(ip_adapter_masks) != len(self.scale):
                raise ValueError(
                    f"Number of ip_adapter_masks ({len(ip_adapter_masks)}) must match number of IP-Adapters ({len(self.scale)})"
                )
        else:
            ip_adapter_masks = [None] * len(self.scale)

2370
        # for ip-adapter
2371
2372
        for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip(
            ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks
2373
2374
2375
        ):
            ip_key = to_k_ip(current_ip_hidden_states)
            ip_value = to_v_ip(current_ip_hidden_states)
2376

2377
2378
            ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
2379

2380
2381
2382
2383
2384
            # the output of sdp = (batch, num_heads, seq_len, head_dim)
            # TODO: add support for attn.scale when we move to Torch 2.1
            current_ip_hidden_states = F.scaled_dot_product_attention(
                query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
            )
2385

2386
2387
2388
2389
            current_ip_hidden_states = current_ip_hidden_states.transpose(1, 2).reshape(
                batch_size, -1, attn.heads * head_dim
            )
            current_ip_hidden_states = current_ip_hidden_states.to(query.dtype)
2390

2391
2392
2393
2394
2395
2396
2397
2398
2399
            if mask is not None:
                mask_downsample = IPAdapterMaskProcessor.downsample(
                    mask, batch_size, current_ip_hidden_states.shape[1], current_ip_hidden_states.shape[2]
                )

                mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device)

                current_ip_hidden_states = current_ip_hidden_states * mask_downsample

2400
            hidden_states = hidden_states + scale * current_ip_hidden_states
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


2418
2419
2420
2421
2422
2423
2424
LORA_ATTENTION_PROCESSORS = (
    LoRAAttnProcessor,
    LoRAAttnProcessor2_0,
    LoRAXFormersAttnProcessor,
    LoRAAttnAddedKVProcessor,
)

2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
ADDED_KV_ATTENTION_PROCESSORS = (
    AttnAddedKVProcessor,
    SlicedAttnAddedKVProcessor,
    AttnAddedKVProcessor2_0,
    XFormersAttnAddedKVProcessor,
    LoRAAttnAddedKVProcessor,
)

CROSS_ATTENTION_PROCESSORS = (
    AttnProcessor,
    AttnProcessor2_0,
    XFormersAttnProcessor,
    SlicedAttnProcessor,
    LoRAAttnProcessor,
    LoRAAttnProcessor2_0,
    LoRAXFormersAttnProcessor,
2441
2442
    IPAdapterAttnProcessor,
    IPAdapterAttnProcessor2_0,
2443
2444
)

2445
2446
2447
AttentionProcessor = Union[
    AttnProcessor,
    AttnProcessor2_0,
2448
    FusedAttnProcessor2_0,
2449
2450
2451
2452
2453
2454
2455
2456
    XFormersAttnProcessor,
    SlicedAttnProcessor,
    AttnAddedKVProcessor,
    SlicedAttnAddedKVProcessor,
    AttnAddedKVProcessor2_0,
    XFormersAttnAddedKVProcessor,
    CustomDiffusionAttnProcessor,
    CustomDiffusionXFormersAttnProcessor,
2457
    CustomDiffusionAttnProcessor2_0,
2458
    # deprecated
2459
2460
2461
2462
2463
    LoRAAttnProcessor,
    LoRAAttnProcessor2_0,
    LoRAXFormersAttnProcessor,
    LoRAAttnAddedKVProcessor,
]