test_blipdiffusion.py 6.28 KB
Newer Older
Ayush Mangal's avatar
Ayush Mangal committed
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
Ayush Mangal's avatar
Ayush Mangal committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest

import numpy as np
import torch
from PIL import Image
from transformers import CLIPTokenizer
from transformers.models.blip_2.configuration_blip_2 import Blip2Config
from transformers.models.clip.configuration_clip import CLIPTextConfig

from diffusers import AutoencoderKL, BlipDiffusionPipeline, PNDMScheduler, UNet2DConditionModel
from diffusers.utils.testing_utils import enable_full_determinism
from src.diffusers.pipelines.blip_diffusion.blip_image_processing import BlipImageProcessor
from src.diffusers.pipelines.blip_diffusion.modeling_blip2 import Blip2QFormerModel
from src.diffusers.pipelines.blip_diffusion.modeling_ctx_clip import ContextCLIPTextModel

from ..test_pipelines_common import PipelineTesterMixin


enable_full_determinism()


class BlipDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = BlipDiffusionPipeline
    params = [
        "prompt",
        "reference_image",
        "source_subject_category",
        "target_subject_category",
    ]
    batch_params = [
        "prompt",
        "reference_image",
        "source_subject_category",
        "target_subject_category",
    ]
    required_optional_params = [
        "generator",
        "height",
        "width",
        "latents",
        "guidance_scale",
        "num_inference_steps",
        "neg_prompt",
        "guidance_scale",
        "prompt_strength",
        "prompt_reps",
    ]

    def get_dummy_components(self):
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            vocab_size=1000,
67
68
69
            hidden_size=8,
            intermediate_size=8,
            projection_dim=8,
Ayush Mangal's avatar
Ayush Mangal committed
70
71
72
73
74
75
76
77
78
79
80
            num_hidden_layers=1,
            num_attention_heads=1,
            max_position_embeddings=77,
        )
        text_encoder = ContextCLIPTextModel(text_encoder_config)

        vae = AutoencoderKL(
            in_channels=4,
            out_channels=4,
            down_block_types=("DownEncoderBlock2D",),
            up_block_types=("UpDecoderBlock2D",),
81
82
            block_out_channels=(8,),
            norm_num_groups=8,
Ayush Mangal's avatar
Ayush Mangal committed
83
84
85
            layers_per_block=1,
            act_fn="silu",
            latent_channels=4,
86
            sample_size=8,
Ayush Mangal's avatar
Ayush Mangal committed
87
88
89
        )

        blip_vision_config = {
90
91
            "hidden_size": 8,
            "intermediate_size": 8,
Ayush Mangal's avatar
Ayush Mangal committed
92
93
94
95
96
97
98
99
100
            "num_hidden_layers": 1,
            "num_attention_heads": 1,
            "image_size": 224,
            "patch_size": 14,
            "hidden_act": "quick_gelu",
        }

        blip_qformer_config = {
            "vocab_size": 1000,
101
            "hidden_size": 8,
Ayush Mangal's avatar
Ayush Mangal committed
102
103
            "num_hidden_layers": 1,
            "num_attention_heads": 1,
104
            "intermediate_size": 8,
Ayush Mangal's avatar
Ayush Mangal committed
105
106
            "max_position_embeddings": 512,
            "cross_attention_frequency": 1,
107
            "encoder_hidden_size": 8,
Ayush Mangal's avatar
Ayush Mangal committed
108
109
110
111
        }
        qformer_config = Blip2Config(
            vision_config=blip_vision_config,
            qformer_config=blip_qformer_config,
112
            num_query_tokens=8,
Ayush Mangal's avatar
Ayush Mangal committed
113
114
115
116
117
            tokenizer="hf-internal-testing/tiny-random-bert",
        )
        qformer = Blip2QFormerModel(qformer_config)

        unet = UNet2DConditionModel(
118
119
            block_out_channels=(8, 16),
            norm_num_groups=8,
Ayush Mangal's avatar
Ayush Mangal committed
120
121
122
123
124
125
            layers_per_block=1,
            sample_size=16,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
126
            cross_attention_dim=8,
Ayush Mangal's avatar
Ayush Mangal committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
        )
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        scheduler = PNDMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            set_alpha_to_one=False,
            skip_prk_steps=True,
        )

        vae.eval()
        qformer.eval()
        text_encoder.eval()

        image_processor = BlipImageProcessor()

        components = {
            "text_encoder": text_encoder,
            "vae": vae,
            "qformer": qformer,
            "unet": unet,
            "tokenizer": tokenizer,
            "scheduler": scheduler,
            "image_processor": image_processor,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        np.random.seed(seed)
        reference_image = np.random.rand(32, 32, 3) * 255
        reference_image = Image.fromarray(reference_image.astype("uint8")).convert("RGBA")

        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "swimming underwater",
            "generator": generator,
            "reference_image": reference_image,
            "source_subject_category": "dog",
            "target_subject_category": "dog",
            "height": 32,
            "width": 32,
            "guidance_scale": 7.5,
            "num_inference_steps": 2,
            "output_type": "np",
        }
        return inputs

    def test_blipdiffusion(self):
        device = "cpu"
        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        image = pipe(**self.get_dummy_inputs(device))[0]
        image_slice = image[0, -3:, -3:, 0]

        assert image.shape == (1, 16, 16, 4)

192
193
194
        expected_slice = np.array(
            [0.5329548, 0.8372512, 0.33269387, 0.82096875, 0.43657133, 0.3783, 0.5953028, 0.51934963, 0.42142007]
        )
Ayush Mangal's avatar
Ayush Mangal committed
195
196
197
198

        assert (
            np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        ), f" expected_slice {image_slice.flatten()}, but got {image_slice.flatten()}"