fp16.mdx 12.7 KB
Newer Older
Nathan Lambert's avatar
Nathan Lambert committed
1
2
3
4
5
6
7
8
9
10
11
12
<!--Copyright 2022 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

Pedro Cuenca's avatar
Pedro Cuenca committed
13
# Memory and speed
Patrick von Platen's avatar
Patrick von Platen committed
14

15
16
17
We present some techniques and ideas to optimize 🤗 Diffusers _inference_ for memory or speed. As a general rule, we recommend the use of [xFormers](https://github.com/facebookresearch/xformers) for memory efficient attention, please see the recommended [installation instructions](xformers).

We'll discuss how the following settings impact performance and memory.
Patrick von Platen's avatar
Patrick von Platen committed
18

19
|                  | Latency | Speedup |
20
| ---------------- | ------- | ------- |
21
22
| original         | 9.50s   | x1      |
| cuDNN auto-tuner | 9.37s   | x1.01   |
23
24
| fp16             | 3.61s   | x2.63   |
| channels last    | 3.30s   | x2.88   |
25
| traced UNet      | 3.21s   | x2.96   |
26
| memory efficient attention  | 2.63s  | x3.61   |
27

28
29
30
31
32
<em>
  obtained on NVIDIA TITAN RTX by generating a single image of size 512x512 from
  the prompt "a photo of an astronaut riding a horse on mars" with 50 DDIM
  steps.
</em>
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

## Enable cuDNN auto-tuner

[NVIDIA cuDNN](https://developer.nvidia.com/cudnn) supports many algorithms to compute a convolution. Autotuner runs a short benchmark and selects the kernel with the best performance on a given hardware for a given input size.

Since we’re using **convolutional networks** (other types currently not supported), we can enable cuDNN autotuner before launching the inference by setting:

```python
import torch

torch.backends.cudnn.benchmark = True
```

### Use tf32 instead of fp32 (on Ampere and later CUDA devices)

On Ampere and later CUDA devices matrix multiplications and convolutions can use the TensorFloat32 (TF32) mode for faster but slightly less accurate computations. By default PyTorch enables TF32 mode for convolutions but not matrix multiplications, and unless a network requires full float32 precision we recommend enabling this setting for matrix multiplications, too. It can significantly speed up computations with typically negligible loss of numerical accuracy. You can read more about it [here](https://huggingface.co/docs/transformers/v4.18.0/en/performance#tf32). All you need to do is to add this before your inference:

```python
import torch

torch.backends.cuda.matmul.allow_tf32 = True
```

Pedro Cuenca's avatar
Pedro Cuenca committed
56
57
## Half precision weights

58
To save more GPU memory and get more speed, you can load and run the model weights directly in half precision. This involves loading the float16 version of the weights, which was saved to a branch named `fp16`, and telling PyTorch to use the `float16` type when loading them:
Pedro Cuenca's avatar
Pedro Cuenca committed
59
60
61

```Python
pipe = StableDiffusionPipeline.from_pretrained(
apolinario's avatar
apolinario committed
62
    "runwayml/stable-diffusion-v1-5",
63
    
Pedro Cuenca's avatar
Pedro Cuenca committed
64
65
    torch_dtype=torch.float16,
)
66
67
68
pipe = pipe.to("cuda")

prompt = "a photo of an astronaut riding a horse on mars"
69
image = pipe(prompt).images[0]
Patrick von Platen's avatar
Patrick von Platen committed
70
71
```

72
73
74
75
76
<Tip warning={true}>
  It is strongly discouraged to make use of [`torch.autocast`](https://pytorch.org/docs/stable/amp.html#torch.autocast) in any of the pipelines as it can lead to black images and is always slower than using pure 
  float16 precision.
</Tip>

Pedro Cuenca's avatar
Pedro Cuenca committed
77
78
## Sliced attention for additional memory savings

79
For even additional memory savings, you can use a sliced version of attention that performs the computation in steps instead of all at once.
Patrick von Platen's avatar
Patrick von Platen committed
80

Pedro Cuenca's avatar
Pedro Cuenca committed
81
<Tip>
82
83
84
85
  Attention slicing is useful even if a batch size of just 1 is used - as long
  as the model uses more than one attention head. If there is more than one
  attention head the *QK^T* attention matrix can be computed sequentially for
  each head which can save a significant amount of memory.
Pedro Cuenca's avatar
Pedro Cuenca committed
86
</Tip>
Patrick von Platen's avatar
Patrick von Platen committed
87

Pedro Cuenca's avatar
Pedro Cuenca committed
88
To perform the attention computation sequentially over each head, you only need to invoke [`~StableDiffusionPipeline.enable_attention_slicing`] in your pipeline before inference, like here:
Patrick von Platen's avatar
Patrick von Platen committed
89

Pedro Cuenca's avatar
Pedro Cuenca committed
90
91
92
```Python
import torch
from diffusers import StableDiffusionPipeline
Patrick von Platen's avatar
Patrick von Platen committed
93

Pedro Cuenca's avatar
Pedro Cuenca committed
94
pipe = StableDiffusionPipeline.from_pretrained(
apolinario's avatar
apolinario committed
95
    "runwayml/stable-diffusion-v1-5",
96
    
Pedro Cuenca's avatar
Pedro Cuenca committed
97
98
99
100
101
102
    torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")

prompt = "a photo of an astronaut riding a horse on mars"
pipe.enable_attention_slicing()
103
image = pipe(prompt).images[0]
Pedro Cuenca's avatar
Pedro Cuenca committed
104
```
Patrick von Platen's avatar
Patrick von Platen committed
105

106
107
There's a small performance penalty of about 10% slower inference times, but this method allows you to use Stable Diffusion in as little as 3.2 GB of VRAM!

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

## Sliced VAE decode for larger batches

To decode large batches of images with limited VRAM, or to enable batches with 32 images or more, you can use sliced VAE decode that decodes the batch latents one image at a time.

You likely want to couple this with [`~StableDiffusionPipeline.enable_attention_slicing`] or [`~StableDiffusionPipeline.enable_xformers_memory_efficient_attention`] to further minimize memory use.

To perform the VAE decode one image at a time, invoke [`~StableDiffusionPipeline.enable_vae_slicing`] in your pipeline before inference. For example:

```Python
import torch
from diffusers import StableDiffusionPipeline

pipe = StableDiffusionPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5",
123
    
124
125
126
127
128
129
130
131
132
133
134
135
    torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")

prompt = "a photo of an astronaut riding a horse on mars"
pipe.enable_vae_slicing()
images = pipe([prompt] * 32).images
```

You may see a small performance boost in VAE decode on multi-image batches. There should be no performance impact on single-image batches.


136
137
## Offloading to CPU with accelerate for memory savings

138
For additional memory savings, you can offload the weights to CPU and only load them to GPU when performing the forward pass.
139
140
141
142
143
144
145
146
147

To perform CPU offloading, all you have to do is invoke [`~StableDiffusionPipeline.enable_sequential_cpu_offload`]:

```Python
import torch
from diffusers import StableDiffusionPipeline

pipe = StableDiffusionPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5",
148
    
149
150
151
152
153
154
155
156
    torch_dtype=torch.float16,
)

prompt = "a photo of an astronaut riding a horse on mars"
pipe.enable_sequential_cpu_offload()
image = pipe(prompt).images[0]
```

157
And you can get the memory consumption to < 3GB.
158

159
If is also possible to chain it with attention slicing for minimal memory consumption (< 2GB).
160
161
162
163
164
165
166

```Python
import torch
from diffusers import StableDiffusionPipeline

pipe = StableDiffusionPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5",
167
    
168
169
170
171
172
173
174
175
176
177
    torch_dtype=torch.float16,
)

prompt = "a photo of an astronaut riding a horse on mars"
pipe.enable_sequential_cpu_offload()
pipe.enable_attention_slicing(1)

image = pipe(prompt).images[0]
```

178
179
**Note**: When using `enable_sequential_cpu_offload()`, it is important to **not** move the pipeline to CUDA beforehand or else the gain in memory consumption will only be minimal. See [this issue](https://github.com/huggingface/diffusers/issues/1934) for more information.

180
181
182
183
184
185
186
187
188
189
190
## Using Channels Last memory format

Channels last memory format is an alternative way of ordering NCHW tensors in memory preserving dimensions ordering. Channels last tensors ordered in such a way that channels become the densest dimension (aka storing images pixel-per-pixel). Since not all operators currently support channels last format it may result in a worst performance, so it's better to try it and see if it works for your model.

For example, in order to set the UNet model in our pipeline to use channels last format, we can use the following:

```python
print(pipe.unet.conv_out.state_dict()["weight"].stride())  # (2880, 9, 3, 1)
pipe.unet.to(memory_format=torch.channels_last)  # in-place operation
print(
    pipe.unet.conv_out.state_dict()["weight"].stride()
Yuta Hayashibe's avatar
Yuta Hayashibe committed
191
)  # (2880, 1, 960, 320) having a stride of 1 for the 2nd dimension proves that it works
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
```

## Tracing

Tracing runs an example input tensor through your model, and captures the operations that are invoked as that input makes its way through the model's layers so that an executable or `ScriptFunction` is returned that will be optimized using just-in-time compilation.

To trace our UNet model, we can use the following:

```python
import time
import torch
from diffusers import StableDiffusionPipeline
import functools

# torch disable grad
torch.set_grad_enabled(False)

# set variables
n_experiments = 2
unet_runs_per_experiment = 50

# load inputs
def generate_inputs():
    sample = torch.randn(2, 4, 64, 64).half().cuda()
    timestep = torch.rand(1).half().cuda() * 999
    encoder_hidden_states = torch.randn(2, 77, 768).half().cuda()
    return sample, timestep, encoder_hidden_states


pipe = StableDiffusionPipeline.from_pretrained(
apolinario's avatar
apolinario committed
222
    "runwayml/stable-diffusion-v1-5",
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
    torch_dtype=torch.float16,
).to("cuda")
unet = pipe.unet
unet.eval()
unet.to(memory_format=torch.channels_last)  # use channels_last memory format
unet.forward = functools.partial(unet.forward, return_dict=False)  # set return_dict=False as default

# warmup
for _ in range(3):
    with torch.inference_mode():
        inputs = generate_inputs()
        orig_output = unet(*inputs)

# trace
print("tracing..")
unet_traced = torch.jit.trace(unet, inputs)
unet_traced.eval()
print("done tracing")


# warmup and optimize graph
for _ in range(5):
    with torch.inference_mode():
        inputs = generate_inputs()
        orig_output = unet_traced(*inputs)


# benchmarking
with torch.inference_mode():
    for _ in range(n_experiments):
        torch.cuda.synchronize()
        start_time = time.time()
        for _ in range(unet_runs_per_experiment):
            orig_output = unet_traced(*inputs)
        torch.cuda.synchronize()
        print(f"unet traced inference took {time.time() - start_time:.2f} seconds")
    for _ in range(n_experiments):
        torch.cuda.synchronize()
        start_time = time.time()
        for _ in range(unet_runs_per_experiment):
            orig_output = unet(*inputs)
        torch.cuda.synchronize()
        print(f"unet inference took {time.time() - start_time:.2f} seconds")

# save the model
unet_traced.save("unet_traced.pt")
```

Then we can replace the `unet` attribute of the pipeline with the traced model like the following

```python
from diffusers import StableDiffusionPipeline
import torch
from dataclasses import dataclass


@dataclass
class UNet2DConditionOutput:
    sample: torch.FloatTensor


pipe = StableDiffusionPipeline.from_pretrained(
apolinario's avatar
apolinario committed
285
    "runwayml/stable-diffusion-v1-5",
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
    torch_dtype=torch.float16,
).to("cuda")

# use jitted unet
unet_traced = torch.jit.load("unet_traced.pt")
# del pipe.unet
class TracedUNet(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.in_channels = pipe.unet.in_channels
        self.device = pipe.unet.device

    def forward(self, latent_model_input, t, encoder_hidden_states):
        sample = unet_traced(latent_model_input, t, encoder_hidden_states)[0]
        return UNet2DConditionOutput(sample=sample)


pipe.unet = TracedUNet()

with torch.inference_mode():
    image = pipe([prompt] * 1, num_inference_steps=50).images[0]
```
308
309
310


## Memory Efficient Attention
311
312
313

Recent work on optimizing the bandwitdh in the attention block has generated huge speed ups and gains in GPU memory usage. The most recent being Flash Attention from @tridao: [code](https://github.com/HazyResearch/flash-attention), [paper](https://arxiv.org/pdf/2205.14135.pdf).

314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
Here are the speedups we obtain on a few Nvidia GPUs when running the inference at 512x512 with a batch size of 1 (one prompt):

| GPU              	| Base Attention FP16 	| Memory Efficient Attention FP16 	|
|------------------	|---------------------	|---------------------------------	|
| NVIDIA Tesla T4  	| 3.5it/s             	| 5.5it/s                         	|
| NVIDIA 3060 RTX  	| 4.6it/s             	| 7.8it/s                         	|
| NVIDIA A10G      	| 8.88it/s            	| 15.6it/s                        	|
| NVIDIA RTX A6000 	| 11.7it/s            	| 21.09it/s                       	|
| NVIDIA TITAN RTX  | 12.51it/s         	| 18.22it/s                       	|
| A100-SXM4-40GB    	| 18.6it/s            	| 29.it/s                        	|
| A100-SXM-80GB    	| 18.7it/s            	| 29.5it/s                        	|

To leverage it just make sure you have: 
 - PyTorch > 1.12
 - Cuda available
329
 - [Installed the xformers library](xformers).
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
```python
from diffusers import StableDiffusionPipeline
import torch

pipe = StableDiffusionPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5",
    torch_dtype=torch.float16,
).to("cuda")

pipe.enable_xformers_memory_efficient_attention()

with torch.inference_mode():
    sample = pipe("a small cat")

# optional: You can disable it via
# pipe.disable_xformers_memory_efficient_attention()
346
```