safety_checker.py 5.79 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Suraj Patil's avatar
Suraj Patil committed
15
16
17
18
19
import numpy as np
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel

20
from ...utils import is_transformers_version, logging
Suraj Patil's avatar
Suraj Patil committed
21
22
23
24
25
26
27
28


logger = logging.get_logger(__name__)


def cosine_distance(image_embeds, text_embeds):
    normalized_image_embeds = nn.functional.normalize(image_embeds)
    normalized_text_embeds = nn.functional.normalize(text_embeds)
29
    return torch.mm(normalized_image_embeds, normalized_text_embeds.t())
Suraj Patil's avatar
Suraj Patil committed
30
31
32
33


class StableDiffusionSafetyChecker(PreTrainedModel):
    config_class = CLIPConfig
34
    main_input_name = "clip_input"
Suraj Patil's avatar
Suraj Patil committed
35

36
37
    _no_split_modules = ["CLIPEncoderLayer"]

Suraj Patil's avatar
Suraj Patil committed
38
39
40
41
42
43
44
45
46
    def __init__(self, config: CLIPConfig):
        super().__init__(config)

        self.vision_model = CLIPVisionModel(config.vision_config)
        self.visual_projection = nn.Linear(config.vision_config.hidden_size, config.projection_dim, bias=False)

        self.concept_embeds = nn.Parameter(torch.ones(17, config.projection_dim), requires_grad=False)
        self.special_care_embeds = nn.Parameter(torch.ones(3, config.projection_dim), requires_grad=False)

47
48
        self.concept_embeds_weights = nn.Parameter(torch.ones(17), requires_grad=False)
        self.special_care_embeds_weights = nn.Parameter(torch.ones(3), requires_grad=False)
49
50
51
        # Model requires post_init after transformers v4.57.3
        if is_transformers_version(">", "4.57.3"):
            self.post_init()
Suraj Patil's avatar
Suraj Patil committed
52
53
54
55
56
57

    @torch.no_grad()
    def forward(self, clip_input, images):
        pooled_output = self.vision_model(clip_input)[1]  # pooled_output
        image_embeds = self.visual_projection(pooled_output)

58
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
59
60
        special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds).cpu().float().numpy()
        cos_dist = cosine_distance(image_embeds, self.concept_embeds).cpu().float().numpy()
Suraj Patil's avatar
Suraj Patil committed
61
62
63
64
65

        result = []
        batch_size = image_embeds.shape[0]
        for i in range(batch_size):
            result_img = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []}
66
67
68
69

            # increase this value to create a stronger `nfsw` filter
            # at the cost of increasing the possibility of filtering benign images
            adjustment = 0.0
Suraj Patil's avatar
Suraj Patil committed
70

71
72
73
74
75
76
            for concept_idx in range(len(special_cos_dist[0])):
                concept_cos = special_cos_dist[i][concept_idx]
                concept_threshold = self.special_care_embeds_weights[concept_idx].item()
                result_img["special_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3)
                if result_img["special_scores"][concept_idx] > 0:
                    result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]})
Suraj Patil's avatar
Suraj Patil committed
77
78
                    adjustment = 0.01

79
80
81
82
83
84
            for concept_idx in range(len(cos_dist[0])):
                concept_cos = cos_dist[i][concept_idx]
                concept_threshold = self.concept_embeds_weights[concept_idx].item()
                result_img["concept_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3)
                if result_img["concept_scores"][concept_idx] > 0:
                    result_img["bad_concepts"].append(concept_idx)
Suraj Patil's avatar
Suraj Patil committed
85
86
87

            result.append(result_img)

Suraj Patil's avatar
Suraj Patil committed
88
        has_nsfw_concepts = [len(res["bad_concepts"]) > 0 for res in result]
Suraj Patil's avatar
Suraj Patil committed
89
90
91

        for idx, has_nsfw_concept in enumerate(has_nsfw_concepts):
            if has_nsfw_concept:
92
93
94
95
                if torch.is_tensor(images) or torch.is_tensor(images[0]):
                    images[idx] = torch.zeros_like(images[idx])  # black image
                else:
                    images[idx] = np.zeros(images[idx].shape)  # black image
Suraj Patil's avatar
Suraj Patil committed
96
97
98
99
100
101
102
103

        if any(has_nsfw_concepts):
            logger.warning(
                "Potential NSFW content was detected in one or more images. A black image will be returned instead."
                " Try again with a different prompt and/or seed."
            )

        return images, has_nsfw_concepts
104

105
    @torch.no_grad()
106
    def forward_onnx(self, clip_input: torch.Tensor, images: torch.Tensor):
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        pooled_output = self.vision_model(clip_input)[1]  # pooled_output
        image_embeds = self.visual_projection(pooled_output)

        special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds)
        cos_dist = cosine_distance(image_embeds, self.concept_embeds)

        # increase this value to create a stronger `nsfw` filter
        # at the cost of increasing the possibility of filtering benign images
        adjustment = 0.0

        special_scores = special_cos_dist - self.special_care_embeds_weights + adjustment
        # special_scores = special_scores.round(decimals=3)
        special_care = torch.any(special_scores > 0, dim=1)
        special_adjustment = special_care * 0.01
        special_adjustment = special_adjustment.unsqueeze(1).expand(-1, cos_dist.shape[1])

        concept_scores = (cos_dist - self.concept_embeds_weights) + special_adjustment
        # concept_scores = concept_scores.round(decimals=3)
        has_nsfw_concepts = torch.any(concept_scores > 0, dim=1)

        images[has_nsfw_concepts] = 0.0  # black image

        return images, has_nsfw_concepts