inputs.py 18.6 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
# Copyright 2025 Qwen-Image Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import List, Tuple

import torch

from ...models import QwenImageMultiControlNetModel
from ..modular_pipeline import ModularPipelineBlocks, PipelineState
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
from .modular_pipeline import QwenImageModularPipeline, QwenImagePachifier


def repeat_tensor_to_batch_size(
    input_name: str,
    input_tensor: torch.Tensor,
    batch_size: int,
    num_images_per_prompt: int = 1,
) -> torch.Tensor:
    """Repeat tensor elements to match the final batch size.

    This function expands a tensor's batch dimension to match the final batch size (batch_size * num_images_per_prompt)
    by repeating each element along dimension 0.

    The input tensor must have batch size 1 or batch_size. The function will:
    - If batch size is 1: repeat each element (batch_size * num_images_per_prompt) times
    - If batch size equals batch_size: repeat each element num_images_per_prompt times

    Args:
        input_name (str): Name of the input tensor (used for error messages)
        input_tensor (torch.Tensor): The tensor to repeat. Must have batch size 1 or batch_size.
        batch_size (int): The base batch size (number of prompts)
        num_images_per_prompt (int, optional): Number of images to generate per prompt. Defaults to 1.

    Returns:
        torch.Tensor: The repeated tensor with final batch size (batch_size * num_images_per_prompt)

    Raises:
        ValueError: If input_tensor is not a torch.Tensor or has invalid batch size

    Examples:
        tensor = torch.tensor([[1, 2, 3]]) # shape: [1, 3] repeated = repeat_tensor_to_batch_size("image", tensor,
        batch_size=2, num_images_per_prompt=2) repeated # tensor([[1, 2, 3], [1, 2, 3], [1, 2, 3], [1, 2, 3]]) - shape:
        [4, 3]

        tensor = torch.tensor([[1, 2, 3], [4, 5, 6]]) # shape: [2, 3] repeated = repeat_tensor_to_batch_size("image",
        tensor, batch_size=2, num_images_per_prompt=2) repeated # tensor([[1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6]])
        - shape: [4, 3]
    """
    # make sure input is a tensor
    if not isinstance(input_tensor, torch.Tensor):
        raise ValueError(f"`{input_name}` must be a tensor")

    # make sure input tensor e.g. image_latents has batch size 1 or batch_size same as prompts
    if input_tensor.shape[0] == 1:
        repeat_by = batch_size * num_images_per_prompt
    elif input_tensor.shape[0] == batch_size:
        repeat_by = num_images_per_prompt
    else:
        raise ValueError(
            f"`{input_name}` must have have batch size 1 or {batch_size}, but got {input_tensor.shape[0]}"
        )

    # expand the tensor to match the batch_size * num_images_per_prompt
    input_tensor = input_tensor.repeat_interleave(repeat_by, dim=0)

    return input_tensor


def calculate_dimension_from_latents(latents: torch.Tensor, vae_scale_factor: int) -> Tuple[int, int]:
    """Calculate image dimensions from latent tensor dimensions.

    This function converts latent space dimensions to image space dimensions by multiplying the latent height and width
    by the VAE scale factor.

    Args:
        latents (torch.Tensor): The latent tensor. Must have 4 or 5 dimensions.
            Expected shapes: [batch, channels, height, width] or [batch, channels, frames, height, width]
        vae_scale_factor (int): The scale factor used by the VAE to compress images.
            Typically 8 for most VAEs (image is 8x larger than latents in each dimension)

    Returns:
        Tuple[int, int]: The calculated image dimensions as (height, width)

    Raises:
        ValueError: If latents tensor doesn't have 4 or 5 dimensions

    """
    # make sure the latents are not packed
    if latents.ndim != 4 and latents.ndim != 5:
        raise ValueError(f"unpacked latents must have 4 or 5 dimensions, but got {latents.ndim}")

    latent_height, latent_width = latents.shape[-2:]

    height = latent_height * vae_scale_factor
    width = latent_width * vae_scale_factor

    return height, width


class QwenImageTextInputsStep(ModularPipelineBlocks):
    model_name = "qwenimage"

    @property
    def description(self) -> str:
        summary_section = (
            "Text input processing step that standardizes text embeddings for the pipeline.\n"
            "This step:\n"
            "  1. Determines `batch_size` and `dtype` based on `prompt_embeds`\n"
            "  2. Ensures all text embeddings have consistent batch sizes (batch_size * num_images_per_prompt)"
        )

        # Placement guidance
        placement_section = "\n\nThis block should be placed after all encoder steps to process the text embeddings before they are used in subsequent pipeline steps."

        return summary_section + placement_section

    @property
    def inputs(self) -> List[InputParam]:
        return [
            InputParam(name="num_images_per_prompt", default=1),
            InputParam(name="prompt_embeds", required=True, kwargs_type="denoiser_input_fields"),
            InputParam(name="prompt_embeds_mask", required=True, kwargs_type="denoiser_input_fields"),
            InputParam(name="negative_prompt_embeds", kwargs_type="denoiser_input_fields"),
            InputParam(name="negative_prompt_embeds_mask", kwargs_type="denoiser_input_fields"),
        ]

    @property
    def intermediate_outputs(self) -> List[str]:
        return [
            OutputParam(
                "batch_size",
                type_hint=int,
                description="Number of prompts, the final batch size of model inputs should be batch_size * num_images_per_prompt",
            ),
            OutputParam(
                "dtype",
                type_hint=torch.dtype,
                description="Data type of model tensor inputs (determined by `prompt_embeds`)",
            ),
        ]

    @staticmethod
    def check_inputs(
        prompt_embeds,
        prompt_embeds_mask,
        negative_prompt_embeds,
        negative_prompt_embeds_mask,
    ):
        if negative_prompt_embeds is not None and negative_prompt_embeds_mask is None:
            raise ValueError("`negative_prompt_embeds_mask` is required when `negative_prompt_embeds` is not None")

        if negative_prompt_embeds is None and negative_prompt_embeds_mask is not None:
            raise ValueError("cannot pass `negative_prompt_embeds_mask` without `negative_prompt_embeds`")

        if prompt_embeds_mask.shape[0] != prompt_embeds.shape[0]:
            raise ValueError("`prompt_embeds_mask` must have the same batch size as `prompt_embeds`")

        elif negative_prompt_embeds is not None and negative_prompt_embeds.shape[0] != prompt_embeds.shape[0]:
            raise ValueError("`negative_prompt_embeds` must have the same batch size as `prompt_embeds`")

        elif (
            negative_prompt_embeds_mask is not None and negative_prompt_embeds_mask.shape[0] != prompt_embeds.shape[0]
        ):
            raise ValueError("`negative_prompt_embeds_mask` must have the same batch size as `prompt_embeds`")

    def __call__(self, components: QwenImageModularPipeline, state: PipelineState) -> PipelineState:
        block_state = self.get_block_state(state)

        self.check_inputs(
            prompt_embeds=block_state.prompt_embeds,
            prompt_embeds_mask=block_state.prompt_embeds_mask,
            negative_prompt_embeds=block_state.negative_prompt_embeds,
            negative_prompt_embeds_mask=block_state.negative_prompt_embeds_mask,
        )

        block_state.batch_size = block_state.prompt_embeds.shape[0]
        block_state.dtype = block_state.prompt_embeds.dtype

        _, seq_len, _ = block_state.prompt_embeds.shape

        block_state.prompt_embeds = block_state.prompt_embeds.repeat(1, block_state.num_images_per_prompt, 1)
        block_state.prompt_embeds = block_state.prompt_embeds.view(
            block_state.batch_size * block_state.num_images_per_prompt, seq_len, -1
        )

        block_state.prompt_embeds_mask = block_state.prompt_embeds_mask.repeat(1, block_state.num_images_per_prompt, 1)
        block_state.prompt_embeds_mask = block_state.prompt_embeds_mask.view(
            block_state.batch_size * block_state.num_images_per_prompt, seq_len
        )

        if block_state.negative_prompt_embeds is not None:
            _, seq_len, _ = block_state.negative_prompt_embeds.shape
            block_state.negative_prompt_embeds = block_state.negative_prompt_embeds.repeat(
                1, block_state.num_images_per_prompt, 1
            )
            block_state.negative_prompt_embeds = block_state.negative_prompt_embeds.view(
                block_state.batch_size * block_state.num_images_per_prompt, seq_len, -1
            )

            block_state.negative_prompt_embeds_mask = block_state.negative_prompt_embeds_mask.repeat(
                1, block_state.num_images_per_prompt, 1
            )
            block_state.negative_prompt_embeds_mask = block_state.negative_prompt_embeds_mask.view(
                block_state.batch_size * block_state.num_images_per_prompt, seq_len
            )

        self.set_block_state(state, block_state)

        return components, state


class QwenImageInputsDynamicStep(ModularPipelineBlocks):
    model_name = "qwenimage"

    def __init__(
        self,
        image_latent_inputs: List[str] = ["image_latents"],
        additional_batch_inputs: List[str] = [],
    ):
        """Initialize a configurable step that standardizes the inputs for the denoising step. It:\n"

        This step handles multiple common tasks to prepare inputs for the denoising step:
        1. For encoded image latents, use it update height/width if None, patchifies, and expands batch size
        2. For additional_batch_inputs: Only expands batch dimensions to match final batch size

        This is a dynamic block that allows you to configure which inputs to process.

        Args:
            image_latent_inputs (List[str], optional): Names of image latent tensors to process.
                These will be used to determine height/width, patchified, and batch-expanded. Can be a single string or
                list of strings. Defaults to ["image_latents"]. Examples: ["image_latents"], ["control_image_latents"]
            additional_batch_inputs (List[str], optional):
                Names of additional conditional input tensors to expand batch size. These tensors will only have their
                batch dimensions adjusted to match the final batch size. Can be a single string or list of strings.
                Defaults to []. Examples: ["processed_mask_image"]

        Examples:
            # Configure to process image_latents (default behavior) QwenImageInputsDynamicStep()

            # Configure to process multiple image latent inputs
            QwenImageInputsDynamicStep(image_latent_inputs=["image_latents", "control_image_latents"])

            # Configure to process image latents and additional batch inputs QwenImageInputsDynamicStep(
                image_latent_inputs=["image_latents"], additional_batch_inputs=["processed_mask_image"]
            )
        """
        if not isinstance(image_latent_inputs, list):
            image_latent_inputs = [image_latent_inputs]
        if not isinstance(additional_batch_inputs, list):
            additional_batch_inputs = [additional_batch_inputs]

        self._image_latent_inputs = image_latent_inputs
        self._additional_batch_inputs = additional_batch_inputs
        super().__init__()

    @property
    def description(self) -> str:
        # Functionality section
        summary_section = (
            "Input processing step that:\n"
            "  1. For image latent inputs: Updates height/width if None, patchifies latents, and expands batch size\n"
            "  2. For additional batch inputs: Expands batch dimensions to match final batch size"
        )

        # Inputs info
        inputs_info = ""
        if self._image_latent_inputs or self._additional_batch_inputs:
            inputs_info = "\n\nConfigured inputs:"
            if self._image_latent_inputs:
                inputs_info += f"\n  - Image latent inputs: {self._image_latent_inputs}"
            if self._additional_batch_inputs:
                inputs_info += f"\n  - Additional batch inputs: {self._additional_batch_inputs}"

        # Placement guidance
        placement_section = "\n\nThis block should be placed after the encoder steps and the text input step."

        return summary_section + inputs_info + placement_section

    @property
    def inputs(self) -> List[InputParam]:
        inputs = [
            InputParam(name="num_images_per_prompt", default=1),
            InputParam(name="batch_size", required=True),
            InputParam(name="height"),
            InputParam(name="width"),
        ]

        # Add image latent inputs
        for image_latent_input_name in self._image_latent_inputs:
            inputs.append(InputParam(name=image_latent_input_name))

        # Add additional batch inputs
        for input_name in self._additional_batch_inputs:
            inputs.append(InputParam(name=input_name))

        return inputs

    @property
    def expected_components(self) -> List[ComponentSpec]:
        return [
            ComponentSpec("pachifier", QwenImagePachifier, default_creation_method="from_config"),
        ]

    def __call__(self, components: QwenImageModularPipeline, state: PipelineState) -> PipelineState:
        block_state = self.get_block_state(state)

        # Process image latent inputs (height/width calculation, patchify, and batch expansion)
        for image_latent_input_name in self._image_latent_inputs:
            image_latent_tensor = getattr(block_state, image_latent_input_name)
            if image_latent_tensor is None:
                continue

            # 1. Calculate height/width from latents
            height, width = calculate_dimension_from_latents(image_latent_tensor, components.vae_scale_factor)
            block_state.height = block_state.height or height
            block_state.width = block_state.width or width

            # 2. Patchify the image latent tensor
            image_latent_tensor = components.pachifier.pack_latents(image_latent_tensor)

            # 3. Expand batch size
            image_latent_tensor = repeat_tensor_to_batch_size(
                input_name=image_latent_input_name,
                input_tensor=image_latent_tensor,
                num_images_per_prompt=block_state.num_images_per_prompt,
                batch_size=block_state.batch_size,
            )

            setattr(block_state, image_latent_input_name, image_latent_tensor)

        # Process additional batch inputs (only batch expansion)
        for input_name in self._additional_batch_inputs:
            input_tensor = getattr(block_state, input_name)
            if input_tensor is None:
                continue

            # Only expand batch size
            input_tensor = repeat_tensor_to_batch_size(
                input_name=input_name,
                input_tensor=input_tensor,
                num_images_per_prompt=block_state.num_images_per_prompt,
                batch_size=block_state.batch_size,
            )

            setattr(block_state, input_name, input_tensor)

        self.set_block_state(state, block_state)
        return components, state


class QwenImageControlNetInputsStep(ModularPipelineBlocks):
    model_name = "qwenimage"

    @property
    def description(self) -> str:
        return "prepare the `control_image_latents` for controlnet. Insert after all the other inputs steps."

    @property
    def inputs(self) -> List[InputParam]:
        return [
            InputParam(name="control_image_latents", required=True),
            InputParam(name="batch_size", required=True),
            InputParam(name="num_images_per_prompt", default=1),
            InputParam(name="height"),
            InputParam(name="width"),
        ]

    @torch.no_grad()
    def __call__(self, components: QwenImageModularPipeline, state: PipelineState) -> PipelineState:
        block_state = self.get_block_state(state)

        if isinstance(components.controlnet, QwenImageMultiControlNetModel):
            control_image_latents = []
            # loop through each control_image_latents
            for i, control_image_latents_ in enumerate(block_state.control_image_latents):
                # 1. update height/width if not provided
                height, width = calculate_dimension_from_latents(control_image_latents_, components.vae_scale_factor)
                block_state.height = block_state.height or height
                block_state.width = block_state.width or width

                # 2. pack
                control_image_latents_ = components.pachifier.pack_latents(control_image_latents_)

                # 3. repeat to match the batch size
                control_image_latents_ = repeat_tensor_to_batch_size(
                    input_name=f"control_image_latents[{i}]",
                    input_tensor=control_image_latents_,
                    num_images_per_prompt=block_state.num_images_per_prompt,
                    batch_size=block_state.batch_size,
                )

                control_image_latents.append(control_image_latents_)

            block_state.control_image_latents = control_image_latents

        else:
            # 1. update height/width if not provided
            height, width = calculate_dimension_from_latents(
                block_state.control_image_latents, components.vae_scale_factor
            )
            block_state.height = block_state.height or height
            block_state.width = block_state.width or width

            # 2. pack
            block_state.control_image_latents = components.pachifier.pack_latents(block_state.control_image_latents)

            # 3. repeat to match the batch size
            block_state.control_image_latents = repeat_tensor_to_batch_size(
                input_name="control_image_latents",
                input_tensor=block_state.control_image_latents,
                num_images_per_prompt=block_state.num_images_per_prompt,
                batch_size=block_state.batch_size,
            )

            block_state.control_image_latents = block_state.control_image_latents

        self.set_block_state(state, block_state)

        return components, state