denoise.py 26.4 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
# Copyright 2025 Qwen-Image Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import List, Tuple

import torch

from ...configuration_utils import FrozenDict
from ...guiders import ClassifierFreeGuidance
from ...models import QwenImageControlNetModel, QwenImageTransformer2DModel
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import logging
from ..modular_pipeline import BlockState, LoopSequentialPipelineBlocks, ModularPipelineBlocks, PipelineState
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
from .modular_pipeline import QwenImageModularPipeline


logger = logging.get_logger(__name__)


class QwenImageLoopBeforeDenoiser(ModularPipelineBlocks):
    model_name = "qwenimage"

    @property
    def description(self) -> str:
        return (
            "step within the denoising loop that prepares the latent input for the denoiser. "
            "This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
            "object (e.g. `QwenImageDenoiseLoopWrapper`)"
        )

    @property
    def inputs(self) -> List[InputParam]:
        return [
            InputParam(
                "latents",
                required=True,
                type_hint=torch.Tensor,
                description="The initial latents to use for the denoising process. Can be generated in prepare_latent step.",
            ),
        ]

    @torch.no_grad()
    def __call__(self, components: QwenImageModularPipeline, block_state: BlockState, i: int, t: torch.Tensor):
        # one timestep
        block_state.timestep = t.expand(block_state.latents.shape[0]).to(block_state.latents.dtype)
        block_state.latent_model_input = block_state.latents
        return components, block_state


class QwenImageEditLoopBeforeDenoiser(ModularPipelineBlocks):
    model_name = "qwenimage"

    @property
    def description(self) -> str:
        return (
            "step within the denoising loop that prepares the latent input for the denoiser. "
            "This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
            "object (e.g. `QwenImageDenoiseLoopWrapper`)"
        )

    @property
    def inputs(self) -> List[InputParam]:
        return [
            InputParam(
                "latents",
                required=True,
                type_hint=torch.Tensor,
                description="The initial latents to use for the denoising process. Can be generated in prepare_latent step.",
            ),
            InputParam(
                "image_latents",
                required=True,
                type_hint=torch.Tensor,
                description="The initial image latents to use for the denoising process. Can be encoded in vae_encoder step and packed in prepare_image_latents step.",
            ),
        ]

    @torch.no_grad()
    def __call__(self, components: QwenImageModularPipeline, block_state: BlockState, i: int, t: torch.Tensor):
        # one timestep

        block_state.latent_model_input = torch.cat([block_state.latents, block_state.image_latents], dim=1)
        block_state.timestep = t.expand(block_state.latents.shape[0]).to(block_state.latents.dtype)
        return components, block_state


class QwenImageLoopBeforeDenoiserControlNet(ModularPipelineBlocks):
    model_name = "qwenimage"

    @property
    def expected_components(self) -> List[ComponentSpec]:
        return [
            ComponentSpec(
                "guider",
                ClassifierFreeGuidance,
                config=FrozenDict({"guidance_scale": 4.0}),
                default_creation_method="from_config",
            ),
            ComponentSpec("controlnet", QwenImageControlNetModel),
        ]

    @property
    def description(self) -> str:
        return (
            "step within the denoising loop that runs the controlnet before the denoiser. "
            "This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
            "object (e.g. `QwenImageDenoiseLoopWrapper`)"
        )

    @property
    def inputs(self) -> List[InputParam]:
        return [
            InputParam(
                "control_image_latents",
                required=True,
                type_hint=torch.Tensor,
                description="The control image to use for the denoising process. Can be generated in prepare_controlnet_inputs step.",
            ),
            InputParam(
                "controlnet_conditioning_scale",
                type_hint=float,
                description="The controlnet conditioning scale value to use for the denoising process. Can be generated in prepare_controlnet_inputs step.",
            ),
            InputParam(
                "controlnet_keep",
                required=True,
                type_hint=List[float],
                description="The controlnet keep values to use for the denoising process. Can be generated in prepare_controlnet_inputs step.",
            ),
            InputParam(
                "num_inference_steps",
                required=True,
                type_hint=int,
                description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step.",
            ),
            InputParam(
                kwargs_type="denoiser_input_fields",
                description=(
                    "All conditional model inputs for the denoiser. "
                    "It should contain prompt_embeds/negative_prompt_embeds, txt_seq_lens/negative_txt_seq_lens."
                ),
            ),
        ]

    @torch.no_grad()
    def __call__(self, components: QwenImageModularPipeline, block_state: BlockState, i: int, t: int):
        # cond_scale for the timestep (controlnet input)
        if isinstance(block_state.controlnet_keep[i], list):
            block_state.cond_scale = [
                c * s for c, s in zip(block_state.controlnet_conditioning_scale, block_state.controlnet_keep[i])
            ]
        else:
            controlnet_cond_scale = block_state.controlnet_conditioning_scale
            if isinstance(controlnet_cond_scale, list):
                controlnet_cond_scale = controlnet_cond_scale[0]
            block_state.cond_scale = controlnet_cond_scale * block_state.controlnet_keep[i]

        # run controlnet for the guidance batch
        controlnet_block_samples = components.controlnet(
            hidden_states=block_state.latent_model_input,
            controlnet_cond=block_state.control_image_latents,
            conditioning_scale=block_state.cond_scale,
            timestep=block_state.timestep / 1000,
            img_shapes=block_state.img_shapes,
            encoder_hidden_states=block_state.prompt_embeds,
            encoder_hidden_states_mask=block_state.prompt_embeds_mask,
            txt_seq_lens=block_state.txt_seq_lens,
            return_dict=False,
        )

        block_state.additional_cond_kwargs["controlnet_block_samples"] = controlnet_block_samples

        return components, block_state


class QwenImageLoopDenoiser(ModularPipelineBlocks):
    model_name = "qwenimage"

    @property
    def description(self) -> str:
        return (
            "step within the denoising loop that denoise the latent input for the denoiser. "
            "This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
            "object (e.g. `QwenImageDenoiseLoopWrapper`)"
        )

    @property
    def expected_components(self) -> List[ComponentSpec]:
        return [
            ComponentSpec(
                "guider",
                ClassifierFreeGuidance,
                config=FrozenDict({"guidance_scale": 4.0}),
                default_creation_method="from_config",
            ),
            ComponentSpec("transformer", QwenImageTransformer2DModel),
        ]

    @property
    def inputs(self) -> List[InputParam]:
        return [
            InputParam("attention_kwargs"),
            InputParam(
                "latents",
                required=True,
                type_hint=torch.Tensor,
                description="The latents to use for the denoising process. Can be generated in prepare_latents step.",
            ),
            InputParam(
                "num_inference_steps",
                required=True,
                type_hint=int,
                description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step.",
            ),
            InputParam(
                kwargs_type="denoiser_input_fields",
                description="conditional model inputs for the denoiser: e.g. prompt_embeds, negative_prompt_embeds, etc.",
            ),
            InputParam(
                "img_shapes",
                required=True,
                type_hint=List[Tuple[int, int]],
                description="The shape of the image latents for RoPE calculation. Can be generated in prepare_additional_inputs step.",
            ),
        ]

    @torch.no_grad()
    def __call__(self, components: QwenImageModularPipeline, block_state: BlockState, i: int, t: torch.Tensor):
        guider_input_fields = {
            "encoder_hidden_states": ("prompt_embeds", "negative_prompt_embeds"),
            "encoder_hidden_states_mask": ("prompt_embeds_mask", "negative_prompt_embeds_mask"),
            "txt_seq_lens": ("txt_seq_lens", "negative_txt_seq_lens"),
        }

        components.guider.set_state(step=i, num_inference_steps=block_state.num_inference_steps, timestep=t)
        guider_state = components.guider.prepare_inputs(block_state, guider_input_fields)

        for guider_state_batch in guider_state:
            components.guider.prepare_models(components.transformer)
            cond_kwargs = guider_state_batch.as_dict()
            cond_kwargs = {k: v for k, v in cond_kwargs.items() if k in guider_input_fields}

            # YiYi TODO: add cache context
            guider_state_batch.noise_pred = components.transformer(
                hidden_states=block_state.latent_model_input,
                timestep=block_state.timestep / 1000,
                img_shapes=block_state.img_shapes,
                attention_kwargs=block_state.attention_kwargs,
                return_dict=False,
                **cond_kwargs,
                **block_state.additional_cond_kwargs,
            )[0]

            components.guider.cleanup_models(components.transformer)

        guider_output = components.guider(guider_state)

        # apply guidance rescale
        pred_cond_norm = torch.norm(guider_output.pred_cond, dim=-1, keepdim=True)
        pred_norm = torch.norm(guider_output.pred, dim=-1, keepdim=True)
        block_state.noise_pred = guider_output.pred * (pred_cond_norm / pred_norm)

        return components, block_state


class QwenImageEditLoopDenoiser(ModularPipelineBlocks):
    model_name = "qwenimage"

    @property
    def description(self) -> str:
        return (
            "step within the denoising loop that denoise the latent input for the denoiser. "
            "This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
            "object (e.g. `QwenImageDenoiseLoopWrapper`)"
        )

    @property
    def expected_components(self) -> List[ComponentSpec]:
        return [
            ComponentSpec(
                "guider",
                ClassifierFreeGuidance,
                config=FrozenDict({"guidance_scale": 4.0}),
                default_creation_method="from_config",
            ),
            ComponentSpec("transformer", QwenImageTransformer2DModel),
        ]

    @property
    def inputs(self) -> List[InputParam]:
        return [
            InputParam("attention_kwargs"),
            InputParam(
                "latents",
                required=True,
                type_hint=torch.Tensor,
                description="The latents to use for the denoising process. Can be generated in prepare_latents step.",
            ),
            InputParam(
                "num_inference_steps",
                required=True,
                type_hint=int,
                description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step.",
            ),
            InputParam(
                kwargs_type="denoiser_input_fields",
                description="conditional model inputs for the denoiser: e.g. prompt_embeds, negative_prompt_embeds, etc.",
            ),
            InputParam(
                "img_shapes",
                required=True,
                type_hint=List[Tuple[int, int]],
                description="The shape of the image latents for RoPE calculation. Can be generated in prepare_additional_inputs step.",
            ),
        ]

    @torch.no_grad()
    def __call__(self, components: QwenImageModularPipeline, block_state: BlockState, i: int, t: torch.Tensor):
        guider_input_fields = {
            "encoder_hidden_states": ("prompt_embeds", "negative_prompt_embeds"),
            "encoder_hidden_states_mask": ("prompt_embeds_mask", "negative_prompt_embeds_mask"),
            "txt_seq_lens": ("txt_seq_lens", "negative_txt_seq_lens"),
        }

        components.guider.set_state(step=i, num_inference_steps=block_state.num_inference_steps, timestep=t)
        guider_state = components.guider.prepare_inputs(block_state, guider_input_fields)

        for guider_state_batch in guider_state:
            components.guider.prepare_models(components.transformer)
            cond_kwargs = guider_state_batch.as_dict()
            cond_kwargs = {k: v for k, v in cond_kwargs.items() if k in guider_input_fields}

            # YiYi TODO: add cache context
            guider_state_batch.noise_pred = components.transformer(
                hidden_states=block_state.latent_model_input,
                timestep=block_state.timestep / 1000,
                img_shapes=block_state.img_shapes,
                attention_kwargs=block_state.attention_kwargs,
                return_dict=False,
                **cond_kwargs,
                **block_state.additional_cond_kwargs,
            )[0]

            components.guider.cleanup_models(components.transformer)

        guider_output = components.guider(guider_state)

        pred = guider_output.pred[:, : block_state.latents.size(1)]
        pred_cond = guider_output.pred_cond[:, : block_state.latents.size(1)]

        # apply guidance rescale
        pred_cond_norm = torch.norm(pred_cond, dim=-1, keepdim=True)
        pred_norm = torch.norm(pred, dim=-1, keepdim=True)
        block_state.noise_pred = pred * (pred_cond_norm / pred_norm)

        return components, block_state


class QwenImageLoopAfterDenoiser(ModularPipelineBlocks):
    model_name = "qwenimage"

    @property
    def description(self) -> str:
        return (
            "step within the denoising loop that updates the latents. "
            "This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
            "object (e.g. `QwenImageDenoiseLoopWrapper`)"
        )

    @property
    def expected_components(self) -> List[ComponentSpec]:
        return [
            ComponentSpec("scheduler", FlowMatchEulerDiscreteScheduler),
        ]

    @property
    def intermediate_outputs(self) -> List[OutputParam]:
        return [
            OutputParam("latents", type_hint=torch.Tensor, description="The denoised latents."),
        ]

    @torch.no_grad()
    def __call__(self, components: QwenImageModularPipeline, block_state: BlockState, i: int, t: torch.Tensor):
        latents_dtype = block_state.latents.dtype
        block_state.latents = components.scheduler.step(
            block_state.noise_pred,
            t,
            block_state.latents,
            return_dict=False,
        )[0]

        if block_state.latents.dtype != latents_dtype:
            if torch.backends.mps.is_available():
                # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
                block_state.latents = block_state.latents.to(latents_dtype)

        return components, block_state


class QwenImageLoopAfterDenoiserInpaint(ModularPipelineBlocks):
    model_name = "qwenimage"

    @property
    def description(self) -> str:
        return (
            "step within the denoising loop that updates the latents using mask and image_latents for inpainting. "
            "This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
            "object (e.g. `QwenImageDenoiseLoopWrapper`)"
        )

    @property
    def inputs(self) -> List[InputParam]:
        return [
            InputParam(
                "mask",
                required=True,
                type_hint=torch.Tensor,
                description="The mask to use for the inpainting process. Can be generated in inpaint prepare latents step.",
            ),
            InputParam(
                "image_latents",
                required=True,
                type_hint=torch.Tensor,
                description="The image latents to use for the inpainting process. Can be generated in inpaint prepare latents step.",
            ),
            InputParam(
                "initial_noise",
                required=True,
                type_hint=torch.Tensor,
                description="The initial noise to use for the inpainting process. Can be generated in inpaint prepare latents step.",
            ),
            InputParam(
                "timesteps",
                required=True,
                type_hint=torch.Tensor,
                description="The timesteps to use for the denoising process. Can be generated in set_timesteps step.",
            ),
        ]

    @torch.no_grad()
    def __call__(self, components: QwenImageModularPipeline, block_state: BlockState, i: int, t: torch.Tensor):
        block_state.init_latents_proper = block_state.image_latents
        if i < len(block_state.timesteps) - 1:
            block_state.noise_timestep = block_state.timesteps[i + 1]
            block_state.init_latents_proper = components.scheduler.scale_noise(
                block_state.init_latents_proper, torch.tensor([block_state.noise_timestep]), block_state.initial_noise
            )

        block_state.latents = (
            1 - block_state.mask
        ) * block_state.init_latents_proper + block_state.mask * block_state.latents

        return components, block_state


class QwenImageDenoiseLoopWrapper(LoopSequentialPipelineBlocks):
    model_name = "qwenimage"

    @property
    def description(self) -> str:
        return (
            "Pipeline block that iteratively denoise the latents over `timesteps`. "
            "The specific steps with each iteration can be customized with `sub_blocks` attributes"
        )

    @property
    def loop_expected_components(self) -> List[ComponentSpec]:
        return [
            ComponentSpec("scheduler", FlowMatchEulerDiscreteScheduler),
        ]

    @property
    def loop_inputs(self) -> List[InputParam]:
        return [
            InputParam(
                "timesteps",
                required=True,
                type_hint=torch.Tensor,
                description="The timesteps to use for the denoising process. Can be generated in set_timesteps step.",
            ),
            InputParam(
                "num_inference_steps",
                required=True,
                type_hint=int,
                description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step.",
            ),
        ]

    @torch.no_grad()
    def __call__(self, components: QwenImageModularPipeline, state: PipelineState) -> PipelineState:
        block_state = self.get_block_state(state)

        block_state.num_warmup_steps = max(
            len(block_state.timesteps) - block_state.num_inference_steps * components.scheduler.order, 0
        )

        block_state.additional_cond_kwargs = {}

        with self.progress_bar(total=block_state.num_inference_steps) as progress_bar:
            for i, t in enumerate(block_state.timesteps):
                components, block_state = self.loop_step(components, block_state, i=i, t=t)
                if i == len(block_state.timesteps) - 1 or (
                    (i + 1) > block_state.num_warmup_steps and (i + 1) % components.scheduler.order == 0
                ):
                    progress_bar.update()

        self.set_block_state(state, block_state)

        return components, state


# composing the denoising loops
class QwenImageDenoiseStep(QwenImageDenoiseLoopWrapper):
    block_classes = [
        QwenImageLoopBeforeDenoiser,
        QwenImageLoopDenoiser,
        QwenImageLoopAfterDenoiser,
    ]
    block_names = ["before_denoiser", "denoiser", "after_denoiser"]

    @property
    def description(self) -> str:
        return (
            "Denoise step that iteratively denoise the latents. \n"
            "Its loop logic is defined in `QwenImageDenoiseLoopWrapper.__call__` method \n"
            "At each iteration, it runs blocks defined in `sub_blocks` sequencially:\n"
            " - `QwenImageLoopBeforeDenoiser`\n"
            " - `QwenImageLoopDenoiser`\n"
            " - `QwenImageLoopAfterDenoiser`\n"
            "This block supports text2image and image2image tasks for QwenImage."
        )


# composing the inpainting denoising loops
class QwenImageInpaintDenoiseStep(QwenImageDenoiseLoopWrapper):
    block_classes = [
        QwenImageLoopBeforeDenoiser,
        QwenImageLoopDenoiser,
        QwenImageLoopAfterDenoiser,
        QwenImageLoopAfterDenoiserInpaint,
    ]
    block_names = ["before_denoiser", "denoiser", "after_denoiser", "after_denoiser_inpaint"]

    @property
    def description(self) -> str:
        return (
            "Denoise step that iteratively denoise the latents. \n"
            "Its loop logic is defined in `QwenImageDenoiseLoopWrapper.__call__` method \n"
            "At each iteration, it runs blocks defined in `sub_blocks` sequencially:\n"
            " - `QwenImageLoopBeforeDenoiser`\n"
            " - `QwenImageLoopDenoiser`\n"
            " - `QwenImageLoopAfterDenoiser`\n"
            " - `QwenImageLoopAfterDenoiserInpaint`\n"
            "This block supports inpainting tasks for QwenImage."
        )


# composing the controlnet denoising loops
class QwenImageControlNetDenoiseStep(QwenImageDenoiseLoopWrapper):
    block_classes = [
        QwenImageLoopBeforeDenoiser,
        QwenImageLoopBeforeDenoiserControlNet,
        QwenImageLoopDenoiser,
        QwenImageLoopAfterDenoiser,
    ]
    block_names = ["before_denoiser", "before_denoiser_controlnet", "denoiser", "after_denoiser"]

    @property
    def description(self) -> str:
        return (
            "Denoise step that iteratively denoise the latents. \n"
            "Its loop logic is defined in `QwenImageDenoiseLoopWrapper.__call__` method \n"
            "At each iteration, it runs blocks defined in `sub_blocks` sequencially:\n"
            " - `QwenImageLoopBeforeDenoiser`\n"
            " - `QwenImageLoopBeforeDenoiserControlNet`\n"
            " - `QwenImageLoopDenoiser`\n"
            " - `QwenImageLoopAfterDenoiser`\n"
            "This block supports text2img/img2img tasks with controlnet for QwenImage."
        )


# composing the controlnet denoising loops
class QwenImageInpaintControlNetDenoiseStep(QwenImageDenoiseLoopWrapper):
    block_classes = [
        QwenImageLoopBeforeDenoiser,
        QwenImageLoopBeforeDenoiserControlNet,
        QwenImageLoopDenoiser,
        QwenImageLoopAfterDenoiser,
        QwenImageLoopAfterDenoiserInpaint,
    ]
    block_names = [
        "before_denoiser",
        "before_denoiser_controlnet",
        "denoiser",
        "after_denoiser",
        "after_denoiser_inpaint",
    ]

    @property
    def description(self) -> str:
        return (
            "Denoise step that iteratively denoise the latents. \n"
            "Its loop logic is defined in `QwenImageDenoiseLoopWrapper.__call__` method \n"
            "At each iteration, it runs blocks defined in `sub_blocks` sequencially:\n"
            " - `QwenImageLoopBeforeDenoiser`\n"
            " - `QwenImageLoopBeforeDenoiserControlNet`\n"
            " - `QwenImageLoopDenoiser`\n"
            " - `QwenImageLoopAfterDenoiser`\n"
            " - `QwenImageLoopAfterDenoiserInpaint`\n"
            "This block supports inpainting tasks with controlnet for QwenImage."
        )


# composing the denoising loops
class QwenImageEditDenoiseStep(QwenImageDenoiseLoopWrapper):
    block_classes = [
        QwenImageEditLoopBeforeDenoiser,
        QwenImageEditLoopDenoiser,
        QwenImageLoopAfterDenoiser,
    ]
    block_names = ["before_denoiser", "denoiser", "after_denoiser"]

    @property
    def description(self) -> str:
        return (
            "Denoise step that iteratively denoise the latents. \n"
            "Its loop logic is defined in `QwenImageDenoiseLoopWrapper.__call__` method \n"
            "At each iteration, it runs blocks defined in `sub_blocks` sequencially:\n"
            " - `QwenImageEditLoopBeforeDenoiser`\n"
            " - `QwenImageEditLoopDenoiser`\n"
            " - `QwenImageLoopAfterDenoiser`\n"
            "This block supports QwenImage Edit."
        )


class QwenImageEditInpaintDenoiseStep(QwenImageDenoiseLoopWrapper):
    block_classes = [
        QwenImageEditLoopBeforeDenoiser,
        QwenImageEditLoopDenoiser,
        QwenImageLoopAfterDenoiser,
        QwenImageLoopAfterDenoiserInpaint,
    ]
    block_names = ["before_denoiser", "denoiser", "after_denoiser", "after_denoiser_inpaint"]

    @property
    def description(self) -> str:
        return (
            "Denoise step that iteratively denoise the latents. \n"
            "Its loop logic is defined in `QwenImageDenoiseLoopWrapper.__call__` method \n"
            "At each iteration, it runs blocks defined in `sub_blocks` sequencially:\n"
            " - `QwenImageEditLoopBeforeDenoiser`\n"
            " - `QwenImageEditLoopDenoiser`\n"
            " - `QwenImageLoopAfterDenoiser`\n"
            " - `QwenImageLoopAfterDenoiserInpaint`\n"
            "This block supports inpainting tasks for QwenImage Edit."
        )