test_unconditional.py 5.05 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import sys
import tempfile


sys.path.append("..")
from test_examples_utils import ExamplesTestsAccelerate, run_command  # noqa: E402


logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)


class Unconditional(ExamplesTestsAccelerate):
    def test_train_unconditional(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            test_args = f"""
                examples/unconditional_image_generation/train_unconditional.py
                --dataset_name hf-internal-testing/dummy_image_class_data
                --model_config_name_or_path diffusers/ddpm_dummy
                --resolution 64
                --output_dir {tmpdir}
                --train_batch_size 2
                --num_epochs 1
                --gradient_accumulation_steps 1
                --ddpm_num_inference_steps 2
                --learning_rate 1e-3
                --lr_warmup_steps 5
                """.split()

            run_command(self._launch_args + test_args, return_stdout=True)
            # save_pretrained smoke test
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.safetensors")))
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json")))

    def test_unconditional_checkpointing_checkpoints_total_limit(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            initial_run_args = f"""
                examples/unconditional_image_generation/train_unconditional.py
                --dataset_name hf-internal-testing/dummy_image_class_data
                --model_config_name_or_path diffusers/ddpm_dummy
                --resolution 64
                --output_dir {tmpdir}
                --train_batch_size 1
                --num_epochs 1
                --gradient_accumulation_steps 1
                --ddpm_num_inference_steps 2
                --learning_rate 1e-3
                --lr_warmup_steps 5
                --checkpointing_steps=2
                --checkpoints_total_limit=2
                """.split()

            run_command(self._launch_args + initial_run_args)

            # check checkpoint directories exist
            self.assertEqual(
                {x for x in os.listdir(tmpdir) if "checkpoint" in x},
                # checkpoint-2 should have been deleted
                {"checkpoint-4", "checkpoint-6"},
            )

    def test_unconditional_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            initial_run_args = f"""
                examples/unconditional_image_generation/train_unconditional.py
                --dataset_name hf-internal-testing/dummy_image_class_data
                --model_config_name_or_path diffusers/ddpm_dummy
                --resolution 64
                --output_dir {tmpdir}
                --train_batch_size 1
                --num_epochs 1
                --gradient_accumulation_steps 1
93
                --ddpm_num_inference_steps 1
94
95
                --learning_rate 1e-3
                --lr_warmup_steps 5
96
                --checkpointing_steps=2
97
98
99
100
101
102
103
                """.split()

            run_command(self._launch_args + initial_run_args)

            # check checkpoint directories exist
            self.assertEqual(
                {x for x in os.listdir(tmpdir) if "checkpoint" in x},
104
                {"checkpoint-2", "checkpoint-4", "checkpoint-6"},
105
106
107
108
109
110
111
112
113
114
115
            )

            resume_run_args = f"""
                examples/unconditional_image_generation/train_unconditional.py
                --dataset_name hf-internal-testing/dummy_image_class_data
                --model_config_name_or_path diffusers/ddpm_dummy
                --resolution 64
                --output_dir {tmpdir}
                --train_batch_size 1
                --num_epochs 2
                --gradient_accumulation_steps 1
116
                --ddpm_num_inference_steps 1
117
118
119
120
                --learning_rate 1e-3
                --lr_warmup_steps 5
                --resume_from_checkpoint=checkpoint-6
                --checkpointing_steps=2
121
                --checkpoints_total_limit=2
122
123
124
125
126
127
128
                """.split()

            run_command(self._launch_args + resume_run_args)

            # check checkpoint directories exist
            self.assertEqual(
                {x for x in os.listdir(tmpdir) if "checkpoint" in x},
129
                {"checkpoint-10", "checkpoint-12"},
130
            )