test_dreambooth.py 9.04 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import shutil
import sys
import tempfile

from diffusers import DiffusionPipeline, UNet2DConditionModel


sys.path.append("..")
from test_examples_utils import ExamplesTestsAccelerate, run_command  # noqa: E402


logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)


class DreamBooth(ExamplesTestsAccelerate):
    def test_dreambooth(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            test_args = f"""
                examples/dreambooth/train_dreambooth.py
                --pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe
                --instance_data_dir docs/source/en/imgs
                --instance_prompt photo
                --resolution 64
                --train_batch_size 1
                --gradient_accumulation_steps 1
                --max_train_steps 2
                --learning_rate 5.0e-04
                --scale_lr
                --lr_scheduler constant
                --lr_warmup_steps 0
                --output_dir {tmpdir}
                """.split()

            run_command(self._launch_args + test_args)
            # save_pretrained smoke test
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.safetensors")))
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json")))

    def test_dreambooth_if(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            test_args = f"""
                examples/dreambooth/train_dreambooth.py
                --pretrained_model_name_or_path hf-internal-testing/tiny-if-pipe
                --instance_data_dir docs/source/en/imgs
                --instance_prompt photo
                --resolution 64
                --train_batch_size 1
                --gradient_accumulation_steps 1
                --max_train_steps 2
                --learning_rate 5.0e-04
                --scale_lr
                --lr_scheduler constant
                --lr_warmup_steps 0
                --output_dir {tmpdir}
                --pre_compute_text_embeddings
                --tokenizer_max_length=77
                --text_encoder_use_attention_mask
                """.split()

            run_command(self._launch_args + test_args)
            # save_pretrained smoke test
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.safetensors")))
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json")))

    def test_dreambooth_checkpointing(self):
        instance_prompt = "photo"
        pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe"

        with tempfile.TemporaryDirectory() as tmpdir:
            # Run training script with checkpointing
92
            # max_train_steps == 4, checkpointing_steps == 2
93
94
95
96
97
98
99
100
101
102
            # Should create checkpoints at steps 2, 4

            initial_run_args = f"""
                examples/dreambooth/train_dreambooth.py
                --pretrained_model_name_or_path {pretrained_model_name_or_path}
                --instance_data_dir docs/source/en/imgs
                --instance_prompt {instance_prompt}
                --resolution 64
                --train_batch_size 1
                --gradient_accumulation_steps 1
103
                --max_train_steps 4
104
105
106
107
108
109
110
111
112
113
114
115
116
                --learning_rate 5.0e-04
                --scale_lr
                --lr_scheduler constant
                --lr_warmup_steps 0
                --output_dir {tmpdir}
                --checkpointing_steps=2
                --seed=0
                """.split()

            run_command(self._launch_args + initial_run_args)

            # check can run the original fully trained output pipeline
            pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
117
            pipe(instance_prompt, num_inference_steps=1)
118
119
120
121
122
123
124
125

            # check checkpoint directories exist
            self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-2")))
            self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4")))

            # check can run an intermediate checkpoint
            unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet")
            pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None)
126
            pipe(instance_prompt, num_inference_steps=1)
127
128
129
130
131
132
133
134
135
136
137
138
139
140

            # Remove checkpoint 2 so that we can check only later checkpoints exist after resuming
            shutil.rmtree(os.path.join(tmpdir, "checkpoint-2"))

            # Run training script for 7 total steps resuming from checkpoint 4

            resume_run_args = f"""
                examples/dreambooth/train_dreambooth.py
                --pretrained_model_name_or_path {pretrained_model_name_or_path}
                --instance_data_dir docs/source/en/imgs
                --instance_prompt {instance_prompt}
                --resolution 64
                --train_batch_size 1
                --gradient_accumulation_steps 1
141
                --max_train_steps 6
142
143
144
145
146
147
148
149
150
151
152
153
154
155
                --learning_rate 5.0e-04
                --scale_lr
                --lr_scheduler constant
                --lr_warmup_steps 0
                --output_dir {tmpdir}
                --checkpointing_steps=2
                --resume_from_checkpoint=checkpoint-4
                --seed=0
                """.split()

            run_command(self._launch_args + resume_run_args)

            # check can run new fully trained pipeline
            pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
156
            pipe(instance_prompt, num_inference_steps=1)
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

            # check old checkpoints do not exist
            self.assertFalse(os.path.isdir(os.path.join(tmpdir, "checkpoint-2")))

            # check new checkpoints exist
            self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4")))
            self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-6")))

    def test_dreambooth_checkpointing_checkpoints_total_limit(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            test_args = f"""
            examples/dreambooth/train_dreambooth.py
            --pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe
            --instance_data_dir=docs/source/en/imgs
            --output_dir={tmpdir}
            --instance_prompt=prompt
            --resolution=64
            --train_batch_size=1
            --gradient_accumulation_steps=1
            --max_train_steps=6
            --checkpoints_total_limit=2
            --checkpointing_steps=2
            """.split()

            run_command(self._launch_args + test_args)

            self.assertEqual(
                {x for x in os.listdir(tmpdir) if "checkpoint" in x},
                {"checkpoint-4", "checkpoint-6"},
            )

    def test_dreambooth_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            test_args = f"""
            examples/dreambooth/train_dreambooth.py
            --pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe
            --instance_data_dir=docs/source/en/imgs
            --output_dir={tmpdir}
            --instance_prompt=prompt
            --resolution=64
            --train_batch_size=1
            --gradient_accumulation_steps=1
199
            --max_train_steps=4
200
201
202
203
204
205
206
            --checkpointing_steps=2
            """.split()

            run_command(self._launch_args + test_args)

            self.assertEqual(
                {x for x in os.listdir(tmpdir) if "checkpoint" in x},
207
                {"checkpoint-2", "checkpoint-4"},
208
209
210
211
212
213
214
215
216
217
218
            )

            resume_run_args = f"""
            examples/dreambooth/train_dreambooth.py
            --pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe
            --instance_data_dir=docs/source/en/imgs
            --output_dir={tmpdir}
            --instance_prompt=prompt
            --resolution=64
            --train_batch_size=1
            --gradient_accumulation_steps=1
219
            --max_train_steps=8
220
            --checkpointing_steps=2
221
222
            --resume_from_checkpoint=checkpoint-4
            --checkpoints_total_limit=2
223
224
225
226
            """.split()

            run_command(self._launch_args + resume_run_args)

227
            self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"})