pipeline_pndm.py 2.33 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.


import torch

import tqdm

21
from ...pipeline_utils import DiffusionPipeline
Patrick von Platen's avatar
Patrick von Platen committed
22
23


Patrick von Platen's avatar
Patrick von Platen committed
24
class PNDMPipeline(DiffusionPipeline):
25
    def __init__(self, unet, scheduler):
Patrick von Platen's avatar
Patrick von Platen committed
26
        super().__init__()
27
28
        scheduler = scheduler.set_format("pt")
        self.register_modules(unet=unet, scheduler=scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
29
30

    def __call__(self, batch_size=1, generator=None, torch_device=None, num_inference_steps=50):
Patrick von Platen's avatar
Patrick von Platen committed
31
32
        # For more information on the sampling method you can take a look at Algorithm 2 of
        # the official paper: https://arxiv.org/pdf/2202.09778.pdf
Patrick von Platen's avatar
Patrick von Platen committed
33
34
35
36
37
38
39
40
        if torch_device is None:
            torch_device = "cuda" if torch.cuda.is_available() else "cpu"

        self.unet.to(torch_device)

        # Sample gaussian noise to begin loop
        image = torch.randn(
            (batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution),
Patrick von Platen's avatar
Patrick von Platen committed
41
            generator=generator,
Patrick von Platen's avatar
Patrick von Platen committed
42
43
44
        )
        image = image.to(torch_device)

45
        prk_time_steps = self.scheduler.get_prk_time_steps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
46
47
        for t in tqdm.tqdm(range(len(prk_time_steps))):
            t_orig = prk_time_steps[t]
Patrick von Platen's avatar
Patrick von Platen committed
48
            residual = self.unet(image, t_orig)
Patrick von Platen's avatar
Patrick von Platen committed
49

Patrick von Platen's avatar
Patrick von Platen committed
50
51
52
            if isinstance(residual, dict):
                residual = residual["sample"]

53
            image = self.scheduler.step_prk(residual, t, image, num_inference_steps)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
54

55
        timesteps = self.scheduler.get_time_steps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
56
57
58
        for t in tqdm.tqdm(range(len(timesteps))):
            t_orig = timesteps[t]
            residual = self.unet(image, t_orig)
Patrick von Platen's avatar
Patrick von Platen committed
59

Patrick von Platen's avatar
Patrick von Platen committed
60
61
62
            if isinstance(residual, dict):
                residual = residual["sample"]

63
            image = self.scheduler.step_plms(residual, t, image, num_inference_steps)["prev_sample"]
Patrick von Platen's avatar
Patrick von Platen committed
64
65

        return image