"vscode:/vscode.git/clone" did not exist on "c213444268aa618c3bef988f74c836e10646e6e2"
unet_unconditional.py 28.6 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
from typing import Dict, Union

3
4
5
6
7
8
9
10
import torch
import torch.nn as nn

from ..configuration_utils import ConfigMixin
from ..modeling_utils import ModelMixin
from .attention import AttentionBlock
from .embeddings import get_timestep_embedding
from .resnet import Downsample2D, ResnetBlock2D, Upsample2D
11
from .unet_new import UNetMidBlock2D, get_down_block, get_up_block
12
13


Patrick von Platen's avatar
Patrick von Platen committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
class TimestepEmbedding(nn.Module):
    def __init__(self, channel, time_embed_dim):
        super().__init__()

        self.linear_1 = nn.Linear(channel, time_embed_dim)
        self.act = nn.SiLU()
        self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim)

    def forward(self, sample):
        sample = self.linear_1(sample)
        sample = self.act(sample)
        sample = self.linear_2(sample)
        return sample


29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
class UNetUnconditionalModel(ModelMixin, ConfigMixin):
    """
    The full UNet model with attention and timestep embedding. :param in_channels: channels in the input Tensor. :param
    model_channels: base channel count for the model. :param out_channels: channels in the output Tensor. :param
    num_res_blocks: number of residual blocks per downsample. :param attention_resolutions: a collection of downsample
    rates at which
        attention will take place. May be a set, list, or tuple. For example, if this contains 4, then at 4x
        downsampling, attention will be used.
    :param dropout: the dropout probability. :param channel_mult: channel multiplier for each level of the UNet. :param
    conv_resample: if True, use learned convolutions for upsampling and
        downsampling.
    :param dims: determines if the signal is 1D, 2D, or 3D. :param num_classes: if specified (as an int), then this
    model will be
        class-conditional with `num_classes` classes.
    :param use_checkpoint: use gradient checkpointing to reduce memory usage. :param num_heads: the number of attention
    heads in each attention layer. :param num_heads_channels: if specified, ignore num_heads and instead use
                               a fixed channel width per attention head.
    :param num_heads_upsample: works with num_heads to set a different number
                               of heads for upsampling. Deprecated.
    :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. :param resblock_updown: use residual blocks
    for up/downsampling. :param use_new_attention_order: use a different attention pattern for potentially
                                    increased efficiency.
    """

53
54
    def __init__(
        self,
Patrick von Platen's avatar
Patrick von Platen committed
55
56
57
58
        image_size=None,
        in_channels=None,
        out_channels=None,
        num_res_blocks=None,
59
        dropout=0,
Patrick von Platen's avatar
Patrick von Platen committed
60
        block_channels=(224, 448, 672, 896),
61
62
63
64
65
66
        down_blocks=(
            "UNetResDownBlock2D",
            "UNetResAttnDownBlock2D",
            "UNetResAttnDownBlock2D",
            "UNetResAttnDownBlock2D",
        ),
Patrick von Platen's avatar
Patrick von Platen committed
67
        downsample_padding=1,
68
69
70
71
72
        up_blocks=("UNetResAttnUpBlock2D", "UNetResAttnUpBlock2D", "UNetResAttnUpBlock2D", "UNetResUpBlock2D"),
        resnet_act_fn="silu",
        resnet_eps=1e-5,
        conv_resample=True,
        num_head_channels=32,
Patrick von Platen's avatar
Patrick von Platen committed
73
74
        flip_sin_to_cos=True,
        downscale_freq_shift=0,
Patrick von Platen's avatar
Patrick von Platen committed
75
76
77
        # TODO(PVP) - to delete later at release
        # IMPORTANT: NOT RELEVANT WHEN REVIEWING API
        # ======================================
Patrick von Platen's avatar
Patrick von Platen committed
78
        # LDM
79
        attention_resolutions=(8, 4, 2),
Patrick von Platen's avatar
Patrick von Platen committed
80
81
82
83
84
85
86
87
88
        ldm=False,
        # DDPM
        out_ch=None,
        resolution=None,
        attn_resolutions=None,
        resamp_with_conv=None,
        ch_mult=None,
        ch=None,
        ddpm=False,
Patrick von Platen's avatar
Patrick von Platen committed
89
        # ======================================
90
91
    ):
        super().__init__()
Patrick von Platen's avatar
Patrick von Platen committed
92
93
        # register all __init__ params to be accessible via `self.config.<...>`
        # should probably be automated down the road as this is pure boiler plate code
94
95
96
        self.register_to_config(
            image_size=image_size,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
97
98
            block_channels=block_channels,
            downsample_padding=downsample_padding,
99
100
101
102
103
104
105
            out_channels=out_channels,
            num_res_blocks=num_res_blocks,
            down_blocks=down_blocks,
            up_blocks=up_blocks,
            dropout=dropout,
            conv_resample=conv_resample,
            num_head_channels=num_head_channels,
Patrick von Platen's avatar
Patrick von Platen committed
106
107
            flip_sin_to_cos=flip_sin_to_cos,
            downscale_freq_shift=downscale_freq_shift,
Patrick von Platen's avatar
Patrick von Platen committed
108
109
110
            # TODO(PVP) - to delete later at release
            # IMPORTANT: NOT RELEVANT WHEN REVIEWING API
            # ======================================
111
            attention_resolutions=attention_resolutions,
Patrick von Platen's avatar
Patrick von Platen committed
112
            attn_resolutions=attn_resolutions,
Patrick von Platen's avatar
Patrick von Platen committed
113
114
            ldm=ldm,
            ddpm=ddpm,
Patrick von Platen's avatar
Patrick von Platen committed
115
            # ======================================
116
117
        )

Patrick von Platen's avatar
Patrick von Platen committed
118
119
120
        # TODO(PVP) - to delete later at release
        # IMPORTANT: NOT RELEVANT WHEN REVIEWING API
        # ======================================
121
        self.image_size = image_size
Patrick von Platen's avatar
Patrick von Platen committed
122
        time_embed_dim = block_channels[0] * 4
Patrick von Platen's avatar
Patrick von Platen committed
123
        # ======================================
124

Patrick von Platen's avatar
Patrick von Platen committed
125
126
        # # input
        self.conv_in = nn.Conv2d(in_channels, block_channels[0], kernel_size=3, padding=(1, 1))
127

Patrick von Platen's avatar
Patrick von Platen committed
128
129
        # # time
        self.time_embedding = TimestepEmbedding(block_channels[0], time_embed_dim)
130
131

        self.downsample_blocks = nn.ModuleList([])
Patrick von Platen's avatar
Patrick von Platen committed
132
133
134
135
136
137
138
139
140
        self.mid = None
        self.upsample_blocks = nn.ModuleList([])

        # down
        output_channel = block_channels[0]
        for i, down_block_type in enumerate(down_blocks):
            input_channel = output_channel
            output_channel = block_channels[i]
            is_final_block = i == len(block_channels) - 1
141
142
143
144
145
146
147
148
149
150
151

            down_block = get_down_block(
                down_block_type,
                num_layers=num_res_blocks,
                in_channels=input_channel,
                out_channels=output_channel,
                temb_channels=time_embed_dim,
                add_downsample=not is_final_block,
                resnet_eps=resnet_eps,
                resnet_act_fn=resnet_act_fn,
                attn_num_head_channels=num_head_channels,
Patrick von Platen's avatar
Patrick von Platen committed
152
                downsample_padding=downsample_padding,
153
154
155
            )
            self.downsample_blocks.append(down_block)

Patrick von Platen's avatar
Patrick von Platen committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        # mid
        if self.config.ddpm:
            self.mid_new_2 = UNetMidBlock2D(
                in_channels=block_channels[-1],
                dropout=dropout,
                temb_channels=time_embed_dim,
                resnet_eps=resnet_eps,
                resnet_act_fn=resnet_act_fn,
                resnet_time_scale_shift="default",
                attn_num_head_channels=num_head_channels,
            )
        else:
            self.mid = UNetMidBlock2D(
                in_channels=block_channels[-1],
                dropout=dropout,
                temb_channels=time_embed_dim,
                resnet_eps=resnet_eps,
                resnet_act_fn=resnet_act_fn,
                resnet_time_scale_shift="default",
                attn_num_head_channels=num_head_channels,
            )
177

Patrick von Platen's avatar
Patrick von Platen committed
178
179
180
181
182
183
184
185
186
        # up
        reversed_block_channels = list(reversed(block_channels))
        output_channel = reversed_block_channels[0]
        for i, up_block_type in enumerate(up_blocks):
            prev_output_channel = output_channel
            output_channel = reversed_block_channels[i]
            input_channel = reversed_block_channels[min(i + 1, len(block_channels) - 1)]

            is_final_block = i == len(block_channels) - 1
187
188
189
190

            up_block = get_up_block(
                up_block_type,
                num_layers=num_res_blocks + 1,
Patrick von Platen's avatar
Patrick von Platen committed
191
192
193
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
194
195
196
197
198
199
200
                temb_channels=time_embed_dim,
                add_upsample=not is_final_block,
                resnet_eps=resnet_eps,
                resnet_act_fn=resnet_act_fn,
                attn_num_head_channels=num_head_channels,
            )
            self.upsample_blocks.append(up_block)
Patrick von Platen's avatar
Patrick von Platen committed
201
202
203
204
205
206
            prev_output_channel = output_channel

        # out
        self.conv_norm_out = nn.GroupNorm(num_channels=block_channels[0], num_groups=32, eps=1e-5)
        self.conv_act = nn.SiLU()
        self.conv_out = nn.Conv2d(block_channels[0], out_channels, 3, padding=1)
207

Patrick von Platen's avatar
Patrick von Platen committed
208
209
210
        # TODO(PVP) - to delete later at release
        # IMPORTANT: NOT RELEVANT WHEN REVIEWING API
        # ======================================
Patrick von Platen's avatar
Patrick von Platen committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
        self.is_overwritten = False
        if ldm:
            # =========== TO DELETE AFTER CONVERSION ==========
            transformer_depth = 1
            context_dim = None
            legacy = True
            num_heads = -1
            model_channels = block_channels[0]
            channel_mult = tuple([x // model_channels for x in block_channels])
            self.init_for_ldm(
                in_channels,
                model_channels,
                channel_mult,
                num_res_blocks,
                dropout,
                time_embed_dim,
                attention_resolutions,
                num_head_channels,
                num_heads,
                legacy,
                False,
                transformer_depth,
                context_dim,
                conv_resample,
                out_channels,
            )
        if ddpm:
Patrick von Platen's avatar
Patrick von Platen committed
238
239
240
241
242
            out_ch = out_channels
            resolution = image_size
            ch = block_channels[0]
            ch_mult = [b // ch for b in block_channels]
            resamp_with_conv = conv_resample
Patrick von Platen's avatar
Patrick von Platen committed
243
244
245
246
247
248
249
250
251
252
253
            self.init_for_ddpm(
                ch_mult,
                ch,
                num_res_blocks,
                resolution,
                in_channels,
                resamp_with_conv,
                attn_resolutions,
                out_ch,
                dropout=0.1,
            )
Patrick von Platen's avatar
Patrick von Platen committed
254
255
256
        # ======================================

    def forward(
257
        self, sample: torch.FloatTensor, timestep: Union[torch.Tensor, float, int]
Patrick von Platen's avatar
Patrick von Platen committed
258
259
260
261
    ) -> Dict[str, torch.FloatTensor]:
        # TODO(PVP) - to delete later at release
        # IMPORTANT: NOT RELEVANT WHEN REVIEWING API
        # ======================================
Patrick von Platen's avatar
Patrick von Platen committed
262
263
        if not self.is_overwritten:
            self.set_weights()
Patrick von Platen's avatar
Patrick von Platen committed
264
        # ======================================
Patrick von Platen's avatar
Patrick von Platen committed
265

266
267
        # 1. time step embeddings -> make correct tensor
        timesteps = timestep
268
269
        if not torch.is_tensor(timesteps):
            timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
270
271
        elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(sample.device)
Patrick von Platen's avatar
Patrick von Platen committed
272

273
        t_emb = get_timestep_embedding(
Patrick von Platen's avatar
Patrick von Platen committed
274
275
276
277
            timesteps,
            self.config.block_channels[0],
            flip_sin_to_cos=self.config.flip_sin_to_cos,
            downscale_freq_shift=self.config.downscale_freq_shift,
278
        )
Patrick von Platen's avatar
Patrick von Platen committed
279
        emb = self.time_embedding(t_emb)
280
281
282
283
284
285
286
287
288
289
290
291
292

        # 2. pre-process sample
        sample = self.conv_in(sample)

        # 3. down blocks
        down_block_res_samples = (sample,)
        for downsample_block in self.downsample_blocks:
            sample, res_samples = downsample_block(sample, emb)

            # append to tuple
            down_block_res_samples += res_samples

        # 4. mid block
Patrick von Platen's avatar
Patrick von Platen committed
293
294
295
296
        if self.config.ddpm:
            sample = self.mid_new_2(sample, emb)
        else:
            sample = self.mid(sample, emb)
297
298
299
300
301
302
303
304
305
306
307

        # 5. up blocks
        for upsample_block in self.upsample_blocks:

            # pop from tuple
            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

            sample = upsample_block(sample, res_samples, emb)

        # 6. post-process sample
Patrick von Platen's avatar
Patrick von Platen committed
308
309
310
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)
311

Patrick von Platen's avatar
Patrick von Platen committed
312
313
314
315
316
317
        output = {"sample": sample}

        return output

    # !!!IMPORTANT - ALL OF THE FOLLOWING CODE WILL BE DELETED AT RELEASE TIME AND SHOULD NOT BE TAKEN INTO CONSIDERATION WHEN EVALUATING THE API ###
    # =================================================================================================================================================
318

Patrick von Platen's avatar
Patrick von Platen committed
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
    def set_weights(self):
        self.is_overwritten = True
        if self.config.ldm:

            self.time_embedding.linear_1.weight.data = self.time_embed[0].weight.data
            self.time_embedding.linear_1.bias.data = self.time_embed[0].bias.data
            self.time_embedding.linear_2.weight.data = self.time_embed[2].weight.data
            self.time_embedding.linear_2.bias.data = self.time_embed[2].bias.data

            # ================ SET WEIGHTS OF ALL WEIGHTS ==================
            for i, input_layer in enumerate(self.input_blocks[1:]):
                block_id = i // (self.config.num_res_blocks + 1)
                layer_in_block_id = i % (self.config.num_res_blocks + 1)

                if layer_in_block_id == 2:
                    self.downsample_blocks[block_id].downsamplers[0].conv.weight.data = input_layer[0].op.weight.data
                    self.downsample_blocks[block_id].downsamplers[0].conv.bias.data = input_layer[0].op.bias.data
                elif len(input_layer) > 1:
                    self.downsample_blocks[block_id].resnets[layer_in_block_id].set_weight(input_layer[0])
                    self.downsample_blocks[block_id].attentions[layer_in_block_id].set_weight(input_layer[1])
                else:
                    self.downsample_blocks[block_id].resnets[layer_in_block_id].set_weight(input_layer[0])

            self.mid.resnets[0].set_weight(self.middle_block[0])
            self.mid.resnets[1].set_weight(self.middle_block[2])
            self.mid.attentions[0].set_weight(self.middle_block[1])

            for i, input_layer in enumerate(self.output_blocks):
                block_id = i // (self.config.num_res_blocks + 1)
                layer_in_block_id = i % (self.config.num_res_blocks + 1)

                if len(input_layer) > 2:
                    self.upsample_blocks[block_id].resnets[layer_in_block_id].set_weight(input_layer[0])
                    self.upsample_blocks[block_id].attentions[layer_in_block_id].set_weight(input_layer[1])
                    self.upsample_blocks[block_id].upsamplers[0].conv.weight.data = input_layer[2].conv.weight.data
                    self.upsample_blocks[block_id].upsamplers[0].conv.bias.data = input_layer[2].conv.bias.data
                elif len(input_layer) > 1 and "Upsample2D" in input_layer[1].__class__.__name__:
                    self.upsample_blocks[block_id].resnets[layer_in_block_id].set_weight(input_layer[0])
                    self.upsample_blocks[block_id].upsamplers[0].conv.weight.data = input_layer[1].conv.weight.data
                    self.upsample_blocks[block_id].upsamplers[0].conv.bias.data = input_layer[1].conv.bias.data
                elif len(input_layer) > 1:
                    self.upsample_blocks[block_id].resnets[layer_in_block_id].set_weight(input_layer[0])
                    self.upsample_blocks[block_id].attentions[layer_in_block_id].set_weight(input_layer[1])
                else:
                    self.upsample_blocks[block_id].resnets[layer_in_block_id].set_weight(input_layer[0])

            self.conv_in.weight.data = self.input_blocks[0][0].weight.data
            self.conv_in.bias.data = self.input_blocks[0][0].bias.data

            self.conv_norm_out.weight.data = self.out[0].weight.data
            self.conv_norm_out.bias.data = self.out[0].bias.data
            self.conv_out.weight.data = self.out[2].weight.data
            self.conv_out.bias.data = self.out[2].bias.data

            self.remove_ldm()

        elif self.config.ddpm:
            # =============== SET WEIGHTS ===============
            # =============== TIME ======================
378
379
380
381
            self.time_embedding.linear_1.weight.data = self.temb.dense[0].weight.data
            self.time_embedding.linear_1.bias.data = self.temb.dense[0].bias.data
            self.time_embedding.linear_2.weight.data = self.temb.dense[1].weight.data
            self.time_embedding.linear_2.bias.data = self.temb.dense[1].bias.data
Patrick von Platen's avatar
Patrick von Platen committed
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

            for i, block in enumerate(self.down):
                if hasattr(block, "downsample"):
                    self.downsample_blocks[i].downsamplers[0].conv.weight.data = block.downsample.conv.weight.data
                    self.downsample_blocks[i].downsamplers[0].conv.bias.data = block.downsample.conv.bias.data
                if hasattr(block, "block") and len(block.block) > 0:
                    for j in range(self.num_res_blocks):
                        self.downsample_blocks[i].resnets[j].set_weight(block.block[j])
                if hasattr(block, "attn") and len(block.attn) > 0:
                    for j in range(self.num_res_blocks):
                        self.downsample_blocks[i].attentions[j].set_weight(block.attn[j])

            self.mid_new_2.resnets[0].set_weight(self.mid.block_1)
            self.mid_new_2.resnets[1].set_weight(self.mid.block_2)
            self.mid_new_2.attentions[0].set_weight(self.mid.attn_1)

398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
            for i, block in enumerate(self.up):
                k = len(self.up) - 1 - i
                if hasattr(block, "upsample"):
                    self.upsample_blocks[k].upsamplers[0].conv.weight.data = block.upsample.conv.weight.data
                    self.upsample_blocks[k].upsamplers[0].conv.bias.data = block.upsample.conv.bias.data
                if hasattr(block, "block") and len(block.block) > 0:
                    for j in range(self.num_res_blocks + 1):
                        self.upsample_blocks[k].resnets[j].set_weight(block.block[j])
                if hasattr(block, "attn") and len(block.attn) > 0:
                    for j in range(self.num_res_blocks + 1):
                        self.upsample_blocks[k].attentions[j].set_weight(block.attn[j])

            self.conv_norm_out.weight.data = self.norm_out.weight.data
            self.conv_norm_out.bias.data = self.norm_out.bias.data

            self.remove_ddpm()

Patrick von Platen's avatar
Patrick von Platen committed
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
    def init_for_ddpm(
        self,
        ch_mult,
        ch,
        num_res_blocks,
        resolution,
        in_channels,
        resamp_with_conv,
        attn_resolutions,
        out_ch,
        dropout=0.1,
    ):
        ch_mult = tuple(ch_mult)
        self.ch = ch
        self.temb_ch = self.ch * 4
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution

        # timestep embedding
        self.temb = nn.Module()
        self.temb.dense = nn.ModuleList(
            [
                torch.nn.Linear(self.ch, self.temb_ch),
                torch.nn.Linear(self.temb_ch, self.temb_ch),
            ]
        )

        # downsampling
        self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)

        curr_res = resolution
        in_ch_mult = (1,) + ch_mult
        self.down = nn.ModuleList()
        for i_level in range(self.num_resolutions):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_in = ch * in_ch_mult[i_level]
            block_out = ch * ch_mult[i_level]
            for i_block in range(self.num_res_blocks):
                block.append(
                    ResnetBlock2D(
                        in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout
                    )
                )
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(AttentionBlock(block_in, overwrite_qkv=True))
            down = nn.Module()
            down.block = block
            down.attn = attn
            if i_level != self.num_resolutions - 1:
                down.downsample = Downsample2D(block_in, use_conv=resamp_with_conv, padding=0)
                curr_res = curr_res // 2
            self.down.append(down)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock2D(
            in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
        )
        self.mid.attn_1 = AttentionBlock(block_in, overwrite_qkv=True)
        self.mid.block_2 = ResnetBlock2D(
            in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
        )
        self.mid_new = UNetMidBlock2D(in_channels=block_in, temb_channels=self.temb_ch, dropout=dropout)
        self.mid_new.resnets[0] = self.mid.block_1
        self.mid_new.attentions[0] = self.mid.attn_1
        self.mid_new.resnets[1] = self.mid.block_2

        # upsampling
        self.up = nn.ModuleList()
        for i_level in reversed(range(self.num_resolutions)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_out = ch * ch_mult[i_level]
            skip_in = ch * ch_mult[i_level]
            for i_block in range(self.num_res_blocks + 1):
                if i_block == self.num_res_blocks:
                    skip_in = ch * in_ch_mult[i_level]
                block.append(
                    ResnetBlock2D(
                        in_channels=block_in + skip_in,
                        out_channels=block_out,
                        temb_channels=self.temb_ch,
                        dropout=dropout,
                    )
                )
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(AttentionBlock(block_in, overwrite_qkv=True))
            up = nn.Module()
            up.block = block
            up.attn = attn
            if i_level != 0:
                up.upsample = Upsample2D(block_in, use_conv=resamp_with_conv)
                curr_res = curr_res * 2
            self.up.insert(0, up)  # prepend to get consistent order

        # end
        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)

518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
    def init_for_ldm(
        self,
        in_channels,
        model_channels,
        channel_mult,
        num_res_blocks,
        dropout,
        time_embed_dim,
        attention_resolutions,
        num_head_channels,
        num_heads,
        legacy,
        use_spatial_transformer,
        transformer_depth,
        context_dim,
        conv_resample,
        out_channels,
    ):
        # TODO(PVP) - delete after weight conversion
        class TimestepEmbedSequential(nn.Sequential):
            """
            A sequential module that passes timestep embeddings to the children that support it as an extra input.
            """

            pass

        # TODO(PVP) - delete after weight conversion
        def conv_nd(dims, *args, **kwargs):
            """
            Create a 1D, 2D, or 3D convolution module.
            """
            if dims == 1:
                return nn.Conv1d(*args, **kwargs)
            elif dims == 2:
                return nn.Conv2d(*args, **kwargs)
            elif dims == 3:
                return nn.Conv3d(*args, **kwargs)
            raise ValueError(f"unsupported dimensions: {dims}")

Patrick von Platen's avatar
Patrick von Platen committed
557
558
559
560
561
562
        self.time_embed = nn.Sequential(
            nn.Linear(model_channels, time_embed_dim),
            nn.SiLU(),
            nn.Linear(time_embed_dim, time_embed_dim),
        )

Patrick von Platen's avatar
Patrick von Platen committed
563
        dims = 2
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
        self.input_blocks = nn.ModuleList(
            [TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))]
        )

        self._feature_size = model_channels
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1
        for level, mult in enumerate(channel_mult):
            for _ in range(num_res_blocks):
                layers = [
                    ResnetBlock2D(
                        in_channels=ch,
                        out_channels=mult * model_channels,
                        dropout=dropout,
                        temb_channels=time_embed_dim,
                        eps=1e-5,
                        non_linearity="silu",
                        overwrite_for_ldm=True,
                    )
                ]
                ch = mult * model_channels
                if ds in attention_resolutions:
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
                        # num_heads = 1
                        dim_head = num_head_channels
                    layers.append(
                        AttentionBlock(
                            ch,
                            num_heads=num_heads,
                            num_head_channels=dim_head,
                        ),
                    )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
                        Downsample2D(ch, use_conv=conv_resample, out_channels=out_ch, padding=1, name="op")
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
                self._feature_size += ch

        if num_head_channels == -1:
            dim_head = ch // num_heads
        else:
            num_heads = ch // num_head_channels
            dim_head = num_head_channels
        if legacy:
            # num_heads = 1
            dim_head = num_head_channels

        if dim_head < 0:
            dim_head = None

        # TODO(Patrick) - delete after weight conversion
        # init to be able to overwrite `self.mid`
        self.middle_block = TimestepEmbedSequential(
            ResnetBlock2D(
                in_channels=ch,
                out_channels=None,
                dropout=dropout,
                temb_channels=time_embed_dim,
                eps=1e-5,
                non_linearity="silu",
                overwrite_for_ldm=True,
            ),
            AttentionBlock(
                ch,
                num_heads=num_heads,
                num_head_channels=dim_head,
            ),
            ResnetBlock2D(
                in_channels=ch,
                out_channels=None,
                dropout=dropout,
                temb_channels=time_embed_dim,
                eps=1e-5,
                non_linearity="silu",
                overwrite_for_ldm=True,
            ),
        )
        self._feature_size += ch

        self.output_blocks = nn.ModuleList([])
        for level, mult in list(enumerate(channel_mult))[::-1]:
            for i in range(num_res_blocks + 1):
                ich = input_block_chans.pop()
                layers = [
                    ResnetBlock2D(
                        in_channels=ch + ich,
                        out_channels=model_channels * mult,
                        dropout=dropout,
                        temb_channels=time_embed_dim,
                        eps=1e-5,
                        non_linearity="silu",
                        overwrite_for_ldm=True,
                    ),
                ]
                ch = model_channels * mult
                if ds in attention_resolutions:
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
                        # num_heads = 1
                        dim_head = num_head_channels
                    layers.append(
                        AttentionBlock(
                            ch,
                            num_heads=-1,
                            num_head_channels=dim_head,
                        ),
                    )
                if level and i == num_res_blocks:
                    out_ch = ch
                    layers.append(Upsample2D(ch, use_conv=conv_resample, out_channels=out_ch))
                    ds //= 2
                self.output_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch

Patrick von Platen's avatar
Patrick von Platen committed
697
698
699
700
701
702
703
704
705
706
707
708
        self.out = nn.Sequential(
            nn.GroupNorm(num_channels=model_channels, num_groups=32, eps=1e-5),
            nn.SiLU(),
            nn.Conv2d(model_channels, out_channels, 3, padding=1),
        )

    def remove_ldm(self):
        del self.time_embed
        del self.input_blocks
        del self.middle_block
        del self.output_blocks
        del self.out
709
710
711
712
713
714
715

    def remove_ddpm(self):
        del self.temb
        del self.down
        del self.mid_new
        del self.up
        del self.norm_out
Patrick von Platen's avatar
Patrick von Platen committed
716
717
718
719
720
721
722
723
724


def nonlinearity(x):
    # swish
    return x * torch.sigmoid(x)


def Normalize(in_channels):
    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)