test_mixed_int8.py 33 KB
Newer Older
1
# coding=utf-8
Aryan's avatar
Aryan committed
2
# Copyright 2025 The HuggingFace Team Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import tempfile
import unittest

import numpy as np
20
import pytest
21
from huggingface_hub import hf_hub_download
22
from PIL import Image
23

hlky's avatar
hlky committed
24
25
26
from diffusers import (
    BitsAndBytesConfig,
    DiffusionPipeline,
27
    FluxControlPipeline,
hlky's avatar
hlky committed
28
29
30
31
32
    FluxTransformer2DModel,
    SanaTransformer2DModel,
    SD3Transformer2DModel,
    logging,
)
33
from diffusers.quantizers import PipelineQuantizationConfig
34
from diffusers.utils import is_accelerate_version
35
36
from diffusers.utils.testing_utils import (
    CaptureLogger,
37
    backend_empty_cache,
38
39
40
41
42
43
44
    is_bitsandbytes_available,
    is_torch_available,
    is_transformers_available,
    load_pt,
    numpy_cosine_similarity_distance,
    require_accelerate,
    require_bitsandbytes_version_greater,
45
    require_peft_backend,
46
    require_peft_version_greater,
47
    require_torch,
48
    require_torch_accelerator,
49
    require_torch_version_greater_equal,
50
51
52
53
54
    require_transformers_version_greater,
    slow,
    torch_device,
)

55
56
from ..test_torch_compile_utils import QuantCompileTests

57
58
59
60
61
62
63
64
65

def get_some_linear_layer(model):
    if model.__class__.__name__ in ["SD3Transformer2DModel", "FluxTransformer2DModel"]:
        return model.transformer_blocks[0].attn.to_q
    else:
        return NotImplementedError("Don't know what layer to retrieve here.")


if is_transformers_available():
66
    from transformers import BitsAndBytesConfig as BnbConfig
67
68
69
70
71
    from transformers import T5EncoderModel

if is_torch_available():
    import torch

72
    from ..utils import LoRALayer, get_memory_consumption_stat
73
74
75
76
77


if is_bitsandbytes_available():
    import bitsandbytes as bnb

78
79
    from diffusers.quantizers.bitsandbytes import replace_with_bnb_linear

80
81
82
83

@require_bitsandbytes_version_greater("0.43.2")
@require_accelerate
@require_torch
84
@require_torch_accelerator
85
86
87
88
89
90
91
92
93
@slow
class Base8bitTests(unittest.TestCase):
    # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
    # Therefore here we use only SD3 to test our module
    model_name = "stabilityai/stable-diffusion-3-medium-diffusers"

    # This was obtained on audace so the number might slightly change
    expected_rel_difference = 1.94

94
95
    expected_memory_saving_ratio = 0.7

96
97
98
99
    prompt = "a beautiful sunset amidst the mountains."
    num_inference_steps = 10
    seed = 0

100
101
    @classmethod
    def setUpClass(cls):
102
103
104
105
106
107
108
109
        cls.is_deterministic_enabled = torch.are_deterministic_algorithms_enabled()
        if not cls.is_deterministic_enabled:
            torch.use_deterministic_algorithms(True)

    @classmethod
    def tearDownClass(cls):
        if not cls.is_deterministic_enabled:
            torch.use_deterministic_algorithms(False)
110

111
112
    def get_dummy_inputs(self):
        prompt_embeds = load_pt(
113
114
            "https://huggingface.co/datasets/hf-internal-testing/bnb-diffusers-testing-artifacts/resolve/main/prompt_embeds.pt",
            map_location="cpu",
115
116
        )
        pooled_prompt_embeds = load_pt(
117
118
            "https://huggingface.co/datasets/hf-internal-testing/bnb-diffusers-testing-artifacts/resolve/main/pooled_prompt_embeds.pt",
            map_location="cpu",
119
120
        )
        latent_model_input = load_pt(
121
122
            "https://huggingface.co/datasets/hf-internal-testing/bnb-diffusers-testing-artifacts/resolve/main/latent_model_input.pt",
            map_location="cpu",
123
124
125
126
127
128
129
130
131
132
133
134
135
136
        )

        input_dict_for_transformer = {
            "hidden_states": latent_model_input,
            "encoder_hidden_states": prompt_embeds,
            "pooled_projections": pooled_prompt_embeds,
            "timestep": torch.Tensor([1.0]),
            "return_dict": False,
        }
        return input_dict_for_transformer


class BnB8bitBasicTests(Base8bitTests):
    def setUp(self):
137
        gc.collect()
138
        backend_empty_cache(torch_device)
139

140
141
142
143
144
145
        # Models
        self.model_fp16 = SD3Transformer2DModel.from_pretrained(
            self.model_name, subfolder="transformer", torch_dtype=torch.float16
        )
        mixed_int8_config = BitsAndBytesConfig(load_in_8bit=True)
        self.model_8bit = SD3Transformer2DModel.from_pretrained(
146
            self.model_name, subfolder="transformer", quantization_config=mixed_int8_config, device_map=torch_device
147
148
149
        )

    def tearDown(self):
150
151
152
153
        if hasattr(self, "model_fp16"):
            del self.model_fp16
        if hasattr(self, "model_8bit"):
            del self.model_8bit
154
155

        gc.collect()
156
        backend_empty_cache(torch_device)
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

    def test_quantization_num_parameters(self):
        r"""
        Test if the number of returned parameters is correct
        """
        num_params_8bit = self.model_8bit.num_parameters()
        num_params_fp16 = self.model_fp16.num_parameters()

        self.assertEqual(num_params_8bit, num_params_fp16)

    def test_quantization_config_json_serialization(self):
        r"""
        A simple test to check if the quantization config is correctly serialized and deserialized
        """
        config = self.model_8bit.config

        self.assertTrue("quantization_config" in config)

        _ = config["quantization_config"].to_dict()
        _ = config["quantization_config"].to_diff_dict()

        _ = config["quantization_config"].to_json_string()

    def test_memory_footprint(self):
        r"""
        A simple test to check if the model conversion has been done correctly by checking on the
        memory footprint of the converted model and the class type of the linear layers of the converted models
        """
        mem_fp16 = self.model_fp16.get_memory_footprint()
        mem_8bit = self.model_8bit.get_memory_footprint()

        self.assertAlmostEqual(mem_fp16 / mem_8bit, self.expected_rel_difference, delta=1e-2)
        linear = get_some_linear_layer(self.model_8bit)
        self.assertTrue(linear.weight.__class__ == bnb.nn.Int8Params)

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    def test_model_memory_usage(self):
        # Delete to not let anything interfere.
        del self.model_8bit, self.model_fp16

        # Re-instantiate.
        inputs = self.get_dummy_inputs()
        inputs = {
            k: v.to(device=torch_device, dtype=torch.float16) for k, v in inputs.items() if not isinstance(v, bool)
        }
        model_fp16 = SD3Transformer2DModel.from_pretrained(
            self.model_name, subfolder="transformer", torch_dtype=torch.float16
        ).to(torch_device)
        unquantized_model_memory = get_memory_consumption_stat(model_fp16, inputs)
        del model_fp16

        config = BitsAndBytesConfig(load_in_8bit=True)
        model_8bit = SD3Transformer2DModel.from_pretrained(
            self.model_name, subfolder="transformer", quantization_config=config, torch_dtype=torch.float16
        )
        quantized_model_memory = get_memory_consumption_stat(model_8bit, inputs)
        assert unquantized_model_memory / quantized_model_memory >= self.expected_memory_saving_ratio

214
215
    def test_original_dtype(self):
        r"""
216
        A simple test to check if the model successfully stores the original dtype
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
        """
        self.assertTrue("_pre_quantization_dtype" in self.model_8bit.config)
        self.assertFalse("_pre_quantization_dtype" in self.model_fp16.config)
        self.assertTrue(self.model_8bit.config["_pre_quantization_dtype"] == torch.float16)

    def test_keep_modules_in_fp32(self):
        r"""
        A simple tests to check if the modules under `_keep_in_fp32_modules` are kept in fp32.
        Also ensures if inference works.
        """
        fp32_modules = SD3Transformer2DModel._keep_in_fp32_modules
        SD3Transformer2DModel._keep_in_fp32_modules = ["proj_out"]

        mixed_int8_config = BitsAndBytesConfig(load_in_8bit=True)
        model = SD3Transformer2DModel.from_pretrained(
232
            self.model_name, subfolder="transformer", quantization_config=mixed_int8_config, device_map=torch_device
233
234
235
236
237
238
239
240
241
242
243
        )

        for name, module in model.named_modules():
            if isinstance(module, torch.nn.Linear):
                if name in model._keep_in_fp32_modules:
                    self.assertTrue(module.weight.dtype == torch.float32)
                else:
                    # 8-bit parameters are packed in int8 variables
                    self.assertTrue(module.weight.dtype == torch.int8)

        # test if inference works.
jiqing-feng's avatar
jiqing-feng committed
244
        with torch.no_grad() and torch.autocast(model.device.type, dtype=torch.float16):
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
            input_dict_for_transformer = self.get_dummy_inputs()
            model_inputs = {
                k: v.to(device=torch_device) for k, v in input_dict_for_transformer.items() if not isinstance(v, bool)
            }
            model_inputs.update({k: v for k, v in input_dict_for_transformer.items() if k not in model_inputs})
            _ = model(**model_inputs)

        SD3Transformer2DModel._keep_in_fp32_modules = fp32_modules

    def test_linear_are_8bit(self):
        r"""
        A simple test to check if the model conversion has been done correctly by checking on the
        memory footprint of the converted model and the class type of the linear layers of the converted models
        """
        self.model_fp16.get_memory_footprint()
        self.model_8bit.get_memory_footprint()

        for name, module in self.model_8bit.named_modules():
            if isinstance(module, torch.nn.Linear):
                if name not in ["proj_out"]:
                    # 8-bit parameters are packed in int8 variables
                    self.assertTrue(module.weight.dtype == torch.int8)

    def test_llm_skip(self):
        r"""
        A simple test to check if `llm_int8_skip_modules` works as expected
        """
        config = BitsAndBytesConfig(load_in_8bit=True, llm_int8_skip_modules=["proj_out"])
        model_8bit = SD3Transformer2DModel.from_pretrained(
274
            self.model_name, subfolder="transformer", quantization_config=config, device_map=torch_device
275
276
277
278
279
        )
        linear = get_some_linear_layer(model_8bit)
        self.assertTrue(linear.weight.dtype == torch.int8)
        self.assertTrue(isinstance(linear, bnb.nn.Linear8bitLt))

280
        self.assertTrue(isinstance(model_8bit.proj_out, torch.nn.Linear))
281
282
283
284
        self.assertTrue(model_8bit.proj_out.weight.dtype != torch.int8)

    def test_config_from_pretrained(self):
        transformer_8bit = FluxTransformer2DModel.from_pretrained(
285
            "hf-internal-testing/flux.1-dev-int8-pkg", subfolder="transformer"
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
        )
        linear = get_some_linear_layer(transformer_8bit)
        self.assertTrue(linear.weight.__class__ == bnb.nn.Int8Params)
        self.assertTrue(hasattr(linear.weight, "SCB"))

    def test_device_and_dtype_assignment(self):
        r"""
        Test whether trying to cast (or assigning a device to) a model after converting it in 8-bit will throw an error.
        Checks also if other models are casted correctly.
        """
        with self.assertRaises(ValueError):
            # Tries with `str`
            self.model_8bit.to("cpu")

        with self.assertRaises(ValueError):
            # Tries with a `dtype``
            self.model_8bit.to(torch.float16)

        with self.assertRaises(ValueError):
            # Tries with a `device`
306
            self.model_8bit.to(torch.device(f"{torch_device}:0"))
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

        with self.assertRaises(ValueError):
            # Tries with a `device`
            self.model_8bit.float()

        with self.assertRaises(ValueError):
            # Tries with a `device`
            self.model_8bit.half()

        # Test if we did not break anything
        self.model_fp16 = self.model_fp16.to(dtype=torch.float32, device=torch_device)
        input_dict_for_transformer = self.get_dummy_inputs()
        model_inputs = {
            k: v.to(dtype=torch.float32, device=torch_device)
            for k, v in input_dict_for_transformer.items()
            if not isinstance(v, bool)
        }
        model_inputs.update({k: v for k, v in input_dict_for_transformer.items() if k not in model_inputs})
        with torch.no_grad():
            _ = self.model_fp16(**model_inputs)

        # Check this does not throw an error
        _ = self.model_fp16.to("cpu")

        # Check this does not throw an error
        _ = self.model_fp16.half()

        # Check this does not throw an error
        _ = self.model_fp16.float()

        # Check that this does not throw an error
338
        _ = self.model_fp16.to(torch_device)
339

340
341
342
343
344
345
346
347
348
349
350
351
    def test_bnb_8bit_logs_warning_for_no_quantization(self):
        model_with_no_linear = torch.nn.Sequential(torch.nn.Conv2d(4, 4, 3), torch.nn.ReLU())
        quantization_config = BitsAndBytesConfig(load_in_8bit=True)
        logger = logging.get_logger("diffusers.quantizers.bitsandbytes.utils")
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            _ = replace_with_bnb_linear(model_with_no_linear, quantization_config=quantization_config)
        assert (
            "You are loading your model in 8bit or 4bit but no linear modules were found in your model."
            in cap_logger.out
        )

352

hlky's avatar
hlky committed
353
354
355
class Bnb8bitDeviceTests(Base8bitTests):
    def setUp(self) -> None:
        gc.collect()
356
        backend_empty_cache(torch_device)
hlky's avatar
hlky committed
357
358
359
360
361
362

        mixed_int8_config = BitsAndBytesConfig(load_in_8bit=True)
        self.model_8bit = SanaTransformer2DModel.from_pretrained(
            "Efficient-Large-Model/Sana_1600M_4Kpx_BF16_diffusers",
            subfolder="transformer",
            quantization_config=mixed_int8_config,
363
            device_map=torch_device,
hlky's avatar
hlky committed
364
365
366
367
368
369
        )

    def tearDown(self):
        del self.model_8bit

        gc.collect()
370
        backend_empty_cache(torch_device)
hlky's avatar
hlky committed
371
372
373
374
375
376
377
378
379
380

    def test_buffers_device_assignment(self):
        for buffer_name, buffer in self.model_8bit.named_buffers():
            self.assertEqual(
                buffer.device.type,
                torch.device(torch_device).type,
                f"Expected device {torch_device} for {buffer_name} got {buffer.device}.",
            )


381
382
class BnB8bitTrainingTests(Base8bitTests):
    def setUp(self):
383
        gc.collect()
384
        backend_empty_cache(torch_device)
385

386
387
        mixed_int8_config = BitsAndBytesConfig(load_in_8bit=True)
        self.model_8bit = SD3Transformer2DModel.from_pretrained(
388
            self.model_name, subfolder="transformer", quantization_config=mixed_int8_config, device_map=torch_device
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
        )

    def test_training(self):
        # Step 1: freeze all parameters
        for param in self.model_8bit.parameters():
            param.requires_grad = False  # freeze the model - train adapters later
            if param.ndim == 1:
                # cast the small parameters (e.g. layernorm) to fp32 for stability
                param.data = param.data.to(torch.float32)

        # Step 2: add adapters
        for _, module in self.model_8bit.named_modules():
            if "Attention" in repr(type(module)):
                module.to_k = LoRALayer(module.to_k, rank=4)
                module.to_q = LoRALayer(module.to_q, rank=4)
                module.to_v = LoRALayer(module.to_v, rank=4)

        # Step 3: dummy batch
        input_dict_for_transformer = self.get_dummy_inputs()
        model_inputs = {
            k: v.to(device=torch_device) for k, v in input_dict_for_transformer.items() if not isinstance(v, bool)
        }
        model_inputs.update({k: v for k, v in input_dict_for_transformer.items() if k not in model_inputs})

        # Step 4: Check if the gradient is not None
Yao Matrix's avatar
Yao Matrix committed
414
        with torch.amp.autocast(torch_device, dtype=torch.float16):
415
416
417
418
419
420
421
422
423
424
425
426
            out = self.model_8bit(**model_inputs)[0]
            out.norm().backward()

        for module in self.model_8bit.modules():
            if isinstance(module, LoRALayer):
                self.assertTrue(module.adapter[1].weight.grad is not None)
                self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0)


@require_transformers_version_greater("4.44.0")
class SlowBnb8bitTests(Base8bitTests):
    def setUp(self) -> None:
427
        gc.collect()
428
        backend_empty_cache(torch_device)
429

430
431
        mixed_int8_config = BitsAndBytesConfig(load_in_8bit=True)
        model_8bit = SD3Transformer2DModel.from_pretrained(
432
            self.model_name, subfolder="transformer", quantization_config=mixed_int8_config, device_map=torch_device
433
434
435
436
437
438
439
440
441
442
        )
        self.pipeline_8bit = DiffusionPipeline.from_pretrained(
            self.model_name, transformer=model_8bit, torch_dtype=torch.float16
        )
        self.pipeline_8bit.enable_model_cpu_offload()

    def tearDown(self):
        del self.pipeline_8bit

        gc.collect()
443
        backend_empty_cache(torch_device)
444
445
446
447
448
449
450
451
452

    def test_quality(self):
        output = self.pipeline_8bit(
            prompt=self.prompt,
            num_inference_steps=self.num_inference_steps,
            generator=torch.manual_seed(self.seed),
            output_type="np",
        ).images
        out_slice = output[0, -3:, -3:, -1].flatten()
453
        expected_slice = np.array([0.0674, 0.0623, 0.0364, 0.0632, 0.0671, 0.0430, 0.0317, 0.0493, 0.0583])
454
455
456
457
458
459

        max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice)
        self.assertTrue(max_diff < 1e-2)

    def test_model_cpu_offload_raises_warning(self):
        model_8bit = SD3Transformer2DModel.from_pretrained(
460
461
462
463
            self.model_name,
            subfolder="transformer",
            quantization_config=BitsAndBytesConfig(load_in_8bit=True),
            device_map=torch_device,
464
465
466
467
468
469
470
471
472
473
474
475
476
477
        )
        pipeline_8bit = DiffusionPipeline.from_pretrained(
            self.model_name, transformer=model_8bit, torch_dtype=torch.float16
        )
        logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
        logger.setLevel(30)

        with CaptureLogger(logger) as cap_logger:
            pipeline_8bit.enable_model_cpu_offload()

        assert "has been loaded in `bitsandbytes` 8bit" in cap_logger.out

    def test_moving_to_cpu_throws_warning(self):
        model_8bit = SD3Transformer2DModel.from_pretrained(
478
479
480
481
            self.model_name,
            subfolder="transformer",
            quantization_config=BitsAndBytesConfig(load_in_8bit=True),
            device_map=torch_device,
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
        )
        logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
        logger.setLevel(30)

        with CaptureLogger(logger) as cap_logger:
            # Because `model.dtype` will return torch.float16 as SD3 transformer has
            # a conv layer as the first layer.
            _ = DiffusionPipeline.from_pretrained(
                self.model_name, transformer=model_8bit, torch_dtype=torch.float16
            ).to("cpu")

        assert "Pipelines loaded with `dtype=torch.float16`" in cap_logger.out

    def test_generate_quality_dequantize(self):
        r"""
        Test that loading the model and unquantize it produce correct results.
        """
        self.pipeline_8bit.transformer.dequantize()
        output = self.pipeline_8bit(
            prompt=self.prompt,
            num_inference_steps=self.num_inference_steps,
            generator=torch.manual_seed(self.seed),
            output_type="np",
        ).images

        out_slice = output[0, -3:, -3:, -1].flatten()
        expected_slice = np.array([0.0266, 0.0264, 0.0271, 0.0110, 0.0310, 0.0098, 0.0078, 0.0256, 0.0208])
        max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice)
        self.assertTrue(max_diff < 1e-2)

        # 8bit models cannot be offloaded to CPU.
513
        self.assertTrue(self.pipeline_8bit.transformer.device.type == torch_device)
514
515
516
517
518
519
520
521
        # calling it again shouldn't be a problem
        _ = self.pipeline_8bit(
            prompt=self.prompt,
            num_inference_steps=2,
            generator=torch.manual_seed(self.seed),
            output_type="np",
        ).images

522
523
524
525
526
527
528
529
530
531
532
533
    @pytest.mark.xfail(
        condition=is_accelerate_version("<=", "1.1.1"),
        reason="Test will pass after https://github.com/huggingface/accelerate/pull/3223 is in a release.",
        strict=True,
    )
    def test_pipeline_cuda_placement_works_with_mixed_int8(self):
        transformer_8bit_config = BitsAndBytesConfig(load_in_8bit=True)
        transformer_8bit = SD3Transformer2DModel.from_pretrained(
            self.model_name,
            subfolder="transformer",
            quantization_config=transformer_8bit_config,
            torch_dtype=torch.float16,
534
            device_map=torch_device,
535
536
537
538
539
540
541
        )
        text_encoder_3_8bit_config = BnbConfig(load_in_8bit=True)
        text_encoder_3_8bit = T5EncoderModel.from_pretrained(
            self.model_name,
            subfolder="text_encoder_3",
            quantization_config=text_encoder_3_8bit_config,
            torch_dtype=torch.float16,
542
            device_map=torch_device,
543
        )
544

545
        # CUDA device placement works.
546
        device = torch_device if torch_device != "rocm" else "cuda"
547
548
549
550
551
        pipeline_8bit = DiffusionPipeline.from_pretrained(
            self.model_name,
            transformer=transformer_8bit,
            text_encoder_3=text_encoder_3_8bit,
            torch_dtype=torch.float16,
552
        ).to(device)
553
554

        # Check if inference works.
555
        _ = pipeline_8bit(self.prompt, max_sequence_length=20, num_inference_steps=2)
556
557
558

        del pipeline_8bit

559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
    def test_device_map(self):
        """
        Test if the quantized model is working properly with "auto"
        pu/disk offloading doesn't work with bnb.
        """

        def get_dummy_tensor_inputs(device=None, seed: int = 0):
            batch_size = 1
            num_latent_channels = 4
            num_image_channels = 3
            height = width = 4
            sequence_length = 48
            embedding_dim = 32

            torch.manual_seed(seed)
            hidden_states = torch.randn((batch_size, height * width, num_latent_channels)).to(
                device, dtype=torch.bfloat16
            )

            torch.manual_seed(seed)
            encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(
                device, dtype=torch.bfloat16
            )

            torch.manual_seed(seed)
            pooled_prompt_embeds = torch.randn((batch_size, embedding_dim)).to(device, dtype=torch.bfloat16)

            torch.manual_seed(seed)
            text_ids = torch.randn((sequence_length, num_image_channels)).to(device, dtype=torch.bfloat16)

            torch.manual_seed(seed)
            image_ids = torch.randn((height * width, num_image_channels)).to(device, dtype=torch.bfloat16)

            timestep = torch.tensor([1.0]).to(device, dtype=torch.bfloat16).expand(batch_size)

            return {
                "hidden_states": hidden_states,
                "encoder_hidden_states": encoder_hidden_states,
                "pooled_projections": pooled_prompt_embeds,
                "txt_ids": text_ids,
                "img_ids": image_ids,
                "timestep": timestep,
            }

        inputs = get_dummy_tensor_inputs(torch_device)
        expected_slice = np.array(
            [
                0.33789062,
                -0.04736328,
                -0.00256348,
                -0.23144531,
                -0.49804688,
                0.4375,
                -0.15429688,
                -0.65234375,
                0.44335938,
            ]
        )

        # non sharded
        quantization_config = BitsAndBytesConfig(load_in_8bit=True)
        quantized_model = FluxTransformer2DModel.from_pretrained(
            "hf-internal-testing/tiny-flux-pipe",
            subfolder="transformer",
            quantization_config=quantization_config,
            device_map="auto",
            torch_dtype=torch.bfloat16,
        )

        weight = quantized_model.transformer_blocks[0].ff.net[2].weight
        self.assertTrue(isinstance(weight, bnb.nn.modules.Int8Params))

        output = quantized_model(**inputs)[0]
        output_slice = output.flatten()[-9:].detach().float().cpu().numpy()
        self.assertTrue(numpy_cosine_similarity_distance(output_slice, expected_slice) < 1e-3)

        # sharded
        quantization_config = BitsAndBytesConfig(load_in_8bit=True)
        quantized_model = FluxTransformer2DModel.from_pretrained(
            "hf-internal-testing/tiny-flux-sharded",
            subfolder="transformer",
            quantization_config=quantization_config,
            device_map="auto",
            torch_dtype=torch.bfloat16,
        )

        weight = quantized_model.transformer_blocks[0].ff.net[2].weight
        self.assertTrue(isinstance(weight, bnb.nn.modules.Int8Params))
        output = quantized_model(**inputs)[0]
        output_slice = output.flatten()[-9:].detach().float().cpu().numpy()

        self.assertTrue(numpy_cosine_similarity_distance(output_slice, expected_slice) < 1e-3)

652
653
654
655

@require_transformers_version_greater("4.44.0")
class SlowBnb8bitFluxTests(Base8bitTests):
    def setUp(self) -> None:
656
        gc.collect()
657
        backend_empty_cache(torch_device)
658
659

        model_id = "hf-internal-testing/flux.1-dev-int8-pkg"
660
661
662
663
664
665
666
667
668
669
670
671
672
673
        t5_8bit = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder_2")
        transformer_8bit = FluxTransformer2DModel.from_pretrained(model_id, subfolder="transformer")
        self.pipeline_8bit = DiffusionPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-dev",
            text_encoder_2=t5_8bit,
            transformer=transformer_8bit,
            torch_dtype=torch.float16,
        )
        self.pipeline_8bit.enable_model_cpu_offload()

    def tearDown(self):
        del self.pipeline_8bit

        gc.collect()
674
        backend_empty_cache(torch_device)
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692

    def test_quality(self):
        # keep the resolution and max tokens to a lower number for faster execution.
        output = self.pipeline_8bit(
            prompt=self.prompt,
            num_inference_steps=self.num_inference_steps,
            generator=torch.manual_seed(self.seed),
            height=256,
            width=256,
            max_sequence_length=64,
            output_type="np",
        ).images
        out_slice = output[0, -3:, -3:, -1].flatten()
        expected_slice = np.array([0.0574, 0.0554, 0.0581, 0.0686, 0.0676, 0.0759, 0.0757, 0.0803, 0.0930])

        max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice)
        self.assertTrue(max_diff < 1e-3)

693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
    @require_peft_version_greater("0.14.0")
    def test_lora_loading(self):
        self.pipeline_8bit.load_lora_weights(
            hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd"
        )
        self.pipeline_8bit.set_adapters("hyper-sd", adapter_weights=0.125)

        output = self.pipeline_8bit(
            prompt=self.prompt,
            height=256,
            width=256,
            max_sequence_length=64,
            output_type="np",
            num_inference_steps=8,
            generator=torch.manual_seed(42),
        ).images
        out_slice = output[0, -3:, -3:, -1].flatten()

        expected_slice = np.array([0.3916, 0.3916, 0.3887, 0.4243, 0.4155, 0.4233, 0.4570, 0.4531, 0.4248])

        max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice)
        self.assertTrue(max_diff < 1e-3)

716

717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
@require_transformers_version_greater("4.44.0")
@require_peft_backend
class SlowBnb4BitFluxControlWithLoraTests(Base8bitTests):
    def setUp(self) -> None:
        gc.collect()
        backend_empty_cache(torch_device)

        self.pipeline_8bit = FluxControlPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-dev",
            quantization_config=PipelineQuantizationConfig(
                quant_backend="bitsandbytes_8bit",
                quant_kwargs={"load_in_8bit": True},
                components_to_quantize=["transformer", "text_encoder_2"],
            ),
            torch_dtype=torch.float16,
        )
        self.pipeline_8bit.enable_model_cpu_offload()

    def tearDown(self):
        del self.pipeline_8bit

        gc.collect()
        backend_empty_cache(torch_device)

    def test_lora_loading(self):
        self.pipeline_8bit.load_lora_weights("black-forest-labs/FLUX.1-Canny-dev-lora")

        output = self.pipeline_8bit(
            prompt=self.prompt,
            control_image=Image.new(mode="RGB", size=(256, 256)),
            height=256,
            width=256,
            max_sequence_length=64,
            output_type="np",
            num_inference_steps=8,
            generator=torch.Generator().manual_seed(42),
        ).images
        out_slice = output[0, -3:, -3:, -1].flatten()
        expected_slice = np.array([0.2029, 0.2136, 0.2268, 0.1921, 0.1997, 0.2185, 0.2021, 0.2183, 0.2292])

        max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice)
        self.assertTrue(max_diff < 1e-3, msg=f"{out_slice=} != {expected_slice=}")


761
762
763
@slow
class BaseBnb8bitSerializationTests(Base8bitTests):
    def setUp(self):
764
        gc.collect()
765
        backend_empty_cache(torch_device)
766

767
768
769
770
        quantization_config = BitsAndBytesConfig(
            load_in_8bit=True,
        )
        self.model_0 = SD3Transformer2DModel.from_pretrained(
771
            self.model_name, subfolder="transformer", quantization_config=quantization_config, device_map=torch_device
772
773
774
775
776
777
        )

    def tearDown(self):
        del self.model_0

        gc.collect()
778
        backend_empty_cache(torch_device)
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836

    def test_serialization(self):
        r"""
        Test whether it is possible to serialize a model in 8-bit. Uses most typical params as default.
        """
        self.assertTrue("_pre_quantization_dtype" in self.model_0.config)
        with tempfile.TemporaryDirectory() as tmpdirname:
            self.model_0.save_pretrained(tmpdirname)

            config = SD3Transformer2DModel.load_config(tmpdirname)
            self.assertTrue("quantization_config" in config)
            self.assertTrue("_pre_quantization_dtype" not in config)

            model_1 = SD3Transformer2DModel.from_pretrained(tmpdirname)

        # checking quantized linear module weight
        linear = get_some_linear_layer(model_1)
        self.assertTrue(linear.weight.__class__ == bnb.nn.Int8Params)
        self.assertTrue(hasattr(linear.weight, "SCB"))

        # checking memory footpring
        self.assertAlmostEqual(self.model_0.get_memory_footprint() / model_1.get_memory_footprint(), 1, places=2)

        # Matching all parameters and their quant_state items:
        d0 = dict(self.model_0.named_parameters())
        d1 = dict(model_1.named_parameters())
        self.assertTrue(d0.keys() == d1.keys())

        # comparing forward() outputs
        dummy_inputs = self.get_dummy_inputs()
        inputs = {k: v.to(torch_device) for k, v in dummy_inputs.items() if isinstance(v, torch.Tensor)}
        inputs.update({k: v for k, v in dummy_inputs.items() if k not in inputs})
        out_0 = self.model_0(**inputs)[0]
        out_1 = model_1(**inputs)[0]
        self.assertTrue(torch.equal(out_0, out_1))

    def test_serialization_sharded(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            self.model_0.save_pretrained(tmpdirname, max_shard_size="200MB")

            config = SD3Transformer2DModel.load_config(tmpdirname)
            self.assertTrue("quantization_config" in config)
            self.assertTrue("_pre_quantization_dtype" not in config)

            model_1 = SD3Transformer2DModel.from_pretrained(tmpdirname)

        # checking quantized linear module weight
        linear = get_some_linear_layer(model_1)
        self.assertTrue(linear.weight.__class__ == bnb.nn.Int8Params)
        self.assertTrue(hasattr(linear.weight, "SCB"))

        # comparing forward() outputs
        dummy_inputs = self.get_dummy_inputs()
        inputs = {k: v.to(torch_device) for k, v in dummy_inputs.items() if isinstance(v, torch.Tensor)}
        inputs.update({k: v for k, v in dummy_inputs.items() if k not in inputs})
        out_0 = self.model_0(**inputs)[0]
        out_1 = model_1(**inputs)[0]
        self.assertTrue(torch.equal(out_0, out_1))
837
838
839
840


@require_torch_version_greater_equal("2.6.0")
class Bnb8BitCompileTests(QuantCompileTests):
841
842
843
844
845
846
847
    @property
    def quantization_config(self):
        return PipelineQuantizationConfig(
            quant_backend="bitsandbytes_8bit",
            quant_kwargs={"load_in_8bit": True},
            components_to_quantize=["transformer", "text_encoder_2"],
        )
848
849
850
851
852
853
854
855
856
857
858

    def test_torch_compile(self):
        torch._dynamo.config.capture_dynamic_output_shape_ops = True
        super()._test_torch_compile(quantization_config=self.quantization_config, torch_dtype=torch.float16)

    def test_torch_compile_with_cpu_offload(self):
        super()._test_torch_compile_with_cpu_offload(
            quantization_config=self.quantization_config, torch_dtype=torch.float16
        )

    @pytest.mark.xfail(reason="Test fails because of an offloading problem from Accelerate with confusion in hooks.")
859
860
861
    def test_torch_compile_with_group_offload_leaf(self):
        super()._test_torch_compile_with_group_offload_leaf(
            quantization_config=self.quantization_config, torch_dtype=torch.float16, use_stream=True
862
        )