guider_utils.py 14.6 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union

import torch
from huggingface_hub.utils import validate_hf_hub_args
from typing_extensions import Self

from ..configuration_utils import ConfigMixin
from ..utils import PushToHubMixin, get_logger


if TYPE_CHECKING:
    from ..modular_pipelines.modular_pipeline import BlockState


GUIDER_CONFIG_NAME = "guider_config.json"


logger = get_logger(__name__)  # pylint: disable=invalid-name


class BaseGuidance(ConfigMixin, PushToHubMixin):
    r"""Base class providing the skeleton for implementing guidance techniques."""

    config_name = GUIDER_CONFIG_NAME
    _input_predictions = None
    _identifier_key = "__guidance_identifier__"

    def __init__(self, start: float = 0.0, stop: float = 1.0):
        self._start = start
        self._stop = stop
        self._step: int = None
        self._num_inference_steps: int = None
        self._timestep: torch.LongTensor = None
        self._count_prepared = 0
        self._input_fields: Dict[str, Union[str, Tuple[str, str]]] = None
        self._enabled = True

        if not (0.0 <= start < 1.0):
            raise ValueError(f"Expected `start` to be between 0.0 and 1.0, but got {start}.")
        if not (start <= stop <= 1.0):
            raise ValueError(f"Expected `stop` to be between {start} and 1.0, but got {stop}.")

        if self._input_predictions is None or not isinstance(self._input_predictions, list):
            raise ValueError(
                "`_input_predictions` must be a list of required prediction names for the guidance technique."
            )

    def disable(self):
        self._enabled = False

    def enable(self):
        self._enabled = True

    def set_state(self, step: int, num_inference_steps: int, timestep: torch.LongTensor) -> None:
        self._step = step
        self._num_inference_steps = num_inference_steps
        self._timestep = timestep
        self._count_prepared = 0

    def set_input_fields(self, **kwargs: Dict[str, Union[str, Tuple[str, str]]]) -> None:
        """
        Set the input fields for the guidance technique. The input fields are used to specify the names of the returned
        attributes containing the prepared data after `prepare_inputs` is called. The prepared data is obtained from
        the values of the provided keyword arguments to this method.

        Args:
            **kwargs (`Dict[str, Union[str, Tuple[str, str]]]`):
                A dictionary where the keys are the names of the fields that will be used to store the data once it is
                prepared with `prepare_inputs`. The values can be either a string or a tuple of length 2, which is used
                to look up the required data provided for preparation.

                If a string is provided, it will be used as the conditional data (or unconditional if used with a
                guidance method that requires it). If a tuple of length 2 is provided, the first element must be the
                conditional data identifier and the second element must be the unconditional data identifier or None.

                Example:
                ```
                data = {"prompt_embeds": <some tensor>, "negative_prompt_embeds": <some tensor>, "latents": <some tensor>}

                BaseGuidance.set_input_fields(
                    latents="latents",
                    prompt_embeds=("prompt_embeds", "negative_prompt_embeds"),
                )
                ```
        """
        for key, value in kwargs.items():
            is_string = isinstance(value, str)
            is_tuple_of_str_with_len_2 = (
                isinstance(value, tuple) and len(value) == 2 and all(isinstance(v, str) for v in value)
            )
            if not (is_string or is_tuple_of_str_with_len_2):
                raise ValueError(
                    f"Expected `set_input_fields` to be called with a string or a tuple of string with length 2, but got {type(value)} for key {key}."
                )
        self._input_fields = kwargs

    def prepare_models(self, denoiser: torch.nn.Module) -> None:
        """
        Prepares the models for the guidance technique on a given batch of data. This method should be overridden in
        subclasses to implement specific model preparation logic.
        """
        self._count_prepared += 1

    def cleanup_models(self, denoiser: torch.nn.Module) -> None:
        """
        Cleans up the models for the guidance technique after a given batch of data. This method should be overridden
        in subclasses to implement specific model cleanup logic. It is useful for removing any hooks or other stateful
        modifications made during `prepare_models`.
        """
        pass

    def prepare_inputs(self, data: "BlockState") -> List["BlockState"]:
        raise NotImplementedError("BaseGuidance::prepare_inputs must be implemented in subclasses.")

    def __call__(self, data: List["BlockState"]) -> Any:
        if not all(hasattr(d, "noise_pred") for d in data):
            raise ValueError("Expected all data to have `noise_pred` attribute.")
        if len(data) != self.num_conditions:
            raise ValueError(
                f"Expected {self.num_conditions} data items, but got {len(data)}. Please check the input data."
            )
        forward_inputs = {getattr(d, self._identifier_key): d.noise_pred for d in data}
        return self.forward(**forward_inputs)

    def forward(self, *args, **kwargs) -> Any:
        raise NotImplementedError("BaseGuidance::forward must be implemented in subclasses.")

    @property
    def is_conditional(self) -> bool:
        raise NotImplementedError("BaseGuidance::is_conditional must be implemented in subclasses.")

    @property
    def is_unconditional(self) -> bool:
        return not self.is_conditional

    @property
    def num_conditions(self) -> int:
        raise NotImplementedError("BaseGuidance::num_conditions must be implemented in subclasses.")

    @classmethod
    def _prepare_batch(
        cls,
        input_fields: Dict[str, Union[str, Tuple[str, str]]],
        data: "BlockState",
        tuple_index: int,
        identifier: str,
    ) -> "BlockState":
        """
        Prepares a batch of data for the guidance technique. This method is used in the `prepare_inputs` method of the
        `BaseGuidance` class. It prepares the batch based on the provided tuple index.

        Args:
            input_fields (`Dict[str, Union[str, Tuple[str, str]]]`):
                A dictionary where the keys are the names of the fields that will be used to store the data once it is
                prepared with `prepare_inputs`. The values can be either a string or a tuple of length 2, which is used
                to look up the required data provided for preparation. If a string is provided, it will be used as the
                conditional data (or unconditional if used with a guidance method that requires it). If a tuple of
                length 2 is provided, the first element must be the conditional data identifier and the second element
                must be the unconditional data identifier or None.
            data (`BlockState`):
                The input data to be prepared.
            tuple_index (`int`):
                The index to use when accessing input fields that are tuples.

        Returns:
            `BlockState`: The prepared batch of data.
        """
        from ..modular_pipelines.modular_pipeline import BlockState

        if input_fields is None:
            raise ValueError(
                "Input fields cannot be None. Please pass `input_fields` to `prepare_inputs` or call `set_input_fields` before preparing inputs."
            )
        data_batch = {}
        for key, value in input_fields.items():
            try:
                if isinstance(value, str):
                    data_batch[key] = getattr(data, value)
                elif isinstance(value, tuple):
                    data_batch[key] = getattr(data, value[tuple_index])
                else:
                    # We've already checked that value is a string or a tuple of strings with length 2
                    pass
            except AttributeError:
                logger.debug(f"`data` does not have attribute(s) {value}, skipping.")
        data_batch[cls._identifier_key] = identifier
        return BlockState(**data_batch)

    @classmethod
    @validate_hf_hub_args
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Optional[Union[str, os.PathLike]] = None,
        subfolder: Optional[str] = None,
        return_unused_kwargs=False,
        **kwargs,
    ) -> Self:
        r"""
        Instantiate a guider from a pre-defined JSON configuration file in a local directory or Hub repository.

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the guider configuration
                      saved with [`~BaseGuidance.save_pretrained`].
            subfolder (`str`, *optional*):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
            return_unused_kwargs (`bool`, *optional*, defaults to `False`):
                Whether kwargs that are not consumed by the Python class should be returned or not.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.

        <Tip>

        To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
        `huggingface-cli login`. You can also activate the special
        ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a
        firewalled environment.

        </Tip>

        """
        config, kwargs, commit_hash = cls.load_config(
            pretrained_model_name_or_path=pretrained_model_name_or_path,
            subfolder=subfolder,
            return_unused_kwargs=True,
            return_commit_hash=True,
            **kwargs,
        )
        return cls.from_config(config, return_unused_kwargs=return_unused_kwargs, **kwargs)

    def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
        """
        Save a guider configuration object to a directory so that it can be reloaded using the
        [`~BaseGuidance.from_pretrained`] class method.

        Args:
            save_directory (`str` or `os.PathLike`):
                Directory where the configuration JSON file will be saved (will be created if it does not exist).
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
        """
        self.save_config(save_directory=save_directory, push_to_hub=push_to_hub, **kwargs)


def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    r"""
    Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
    Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
    Flawed](https://arxiv.org/pdf/2305.08891.pdf).

    Args:
        noise_cfg (`torch.Tensor`):
            The predicted noise tensor for the guided diffusion process.
        noise_pred_text (`torch.Tensor`):
            The predicted noise tensor for the text-guided diffusion process.
        guidance_rescale (`float`, *optional*, defaults to 0.0):
            A rescale factor applied to the noise predictions.
    Returns:
        noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
    """
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg