test_models_unet.py 15.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import math
18
import os
19
import tracemalloc
20
21
22
23
import unittest

import torch

24
from diffusers import UNet2DConditionModel, UNet2DModel
25
from diffusers.utils import floats_tensor, slow, torch_device
26
27
28
29

from .test_modeling_common import ModelTesterMixin


30
31
32
torch.backends.cuda.matmul.allow_tf32 = False


33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
class UnetModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNet2DModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

        return {"sample": noise, "timestep": time_step}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "block_out_channels": (32, 64),
            "down_block_types": ("DownBlock2D", "AttnDownBlock2D"),
            "up_block_types": ("AttnUpBlock2D", "UpBlock2D"),
            "attention_head_dim": None,
            "out_channels": 3,
            "in_channels": 3,
            "layers_per_block": 2,
            "sample_size": 32,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict


#    TODO(Patrick) - Re-add this test after having correctly added the final VE checkpoints
#    def test_output_pretrained(self):
#        model = UNet2DModel.from_pretrained("fusing/ddpm_dummy_update", subfolder="unet")
#        model.eval()
#
#        torch.manual_seed(0)
#        if torch.cuda.is_available():
#            torch.cuda.manual_seed_all(0)
#
#        noise = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
#        time_step = torch.tensor([10])
#
#        with torch.no_grad():
83
#            output = model(noise, time_step).sample
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#
#        output_slice = output[0, -1, -3:, -3:].flatten()
# fmt: off
#        expected_output_slice = torch.tensor([0.2891, -0.1899, 0.2595, -0.6214, 0.0968, -0.2622, 0.4688, 0.1311, 0.0053])
# fmt: on
#        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))


class UNetLDMModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNet2DModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 4
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

        return {"sample": noise, "timestep": time_step}

    @property
    def input_shape(self):
        return (4, 32, 32)

    @property
    def output_shape(self):
        return (4, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "sample_size": 32,
            "in_channels": 4,
            "out_channels": 4,
            "layers_per_block": 2,
            "block_out_channels": (32, 64),
            "attention_head_dim": 32,
            "down_block_types": ("DownBlock2D", "DownBlock2D"),
            "up_block_types": ("UpBlock2D", "UpBlock2D"),
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_from_pretrained_hub(self):
        model, loading_info = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)

        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
135
        image = model(**self.dummy_input).sample
136
137
138

        assert image is not None, "Make sure output is not None"

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    @unittest.skipIf(torch_device == "cpu", "This test is supposed to run on GPU")
    def test_from_pretrained_accelerate(self):
        model, _ = UNet2DModel.from_pretrained(
            "fusing/unet-ldm-dummy-update", output_loading_info=True, device_map="auto"
        )
        model.to(torch_device)
        image = model(**self.dummy_input).sample

        assert image is not None, "Make sure output is not None"

    @unittest.skipIf(torch_device == "cpu", "This test is supposed to run on GPU")
    def test_from_pretrained_accelerate_wont_change_results(self):
        model_accelerate, _ = UNet2DModel.from_pretrained(
            "fusing/unet-ldm-dummy-update", output_loading_info=True, device_map="auto"
        )
        model_accelerate.to(torch_device)
        model_accelerate.eval()

        noise = torch.randn(
            1,
            model_accelerate.config.in_channels,
            model_accelerate.config.sample_size,
            model_accelerate.config.sample_size,
            generator=torch.manual_seed(0),
        )
        noise = noise.to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0]).to(torch_device)

        arr_accelerate = model_accelerate(noise, time_step)["sample"]

        # two models don't need to stay in the device at the same time
        del model_accelerate
        torch.cuda.empty_cache()
        gc.collect()

        model_normal_load, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
        model_normal_load.to(torch_device)
        model_normal_load.eval()
        arr_normal_load = model_normal_load(noise, time_step)["sample"]

        assert torch.allclose(arr_accelerate, arr_normal_load, rtol=1e-3)

    @unittest.skipIf(torch_device == "cpu", "This test is supposed to run on GPU")
    def test_memory_footprint_gets_reduced(self):
        torch.cuda.empty_cache()
        gc.collect()

        tracemalloc.start()
        model_accelerate, _ = UNet2DModel.from_pretrained(
            "fusing/unet-ldm-dummy-update", output_loading_info=True, device_map="auto"
        )
        model_accelerate.to(torch_device)
        model_accelerate.eval()
        _, peak_accelerate = tracemalloc.get_traced_memory()

        del model_accelerate
        torch.cuda.empty_cache()
        gc.collect()

        model_normal_load, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
        model_normal_load.to(torch_device)
        model_normal_load.eval()
        _, peak_normal = tracemalloc.get_traced_memory()

        tracemalloc.stop()

        assert peak_accelerate < peak_normal

207
208
209
    def test_output_pretrained(self):
        model = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update")
        model.eval()
210
        model.to(torch_device)
211

212
213
214
215
216
217
218
        noise = torch.randn(
            1,
            model.config.in_channels,
            model.config.sample_size,
            model.config.sample_size,
            generator=torch.manual_seed(0),
        )
219
220
        noise = noise.to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0]).to(torch_device)
221
222

        with torch.no_grad():
223
            output = model(noise, time_step).sample
224

225
        output_slice = output[0, -1, -3:, -3:].flatten().cpu()
226
227
228
229
        # fmt: off
        expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800])
        # fmt: on

230
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-3))
231
232


233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
class UNet2DConditionModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNet2DConditionModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 4
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)
        encoder_hidden_states = floats_tensor((batch_size, 4, 32)).to(torch_device)

        return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states}

    @property
    def input_shape(self):
        return (4, 32, 32)

    @property
    def output_shape(self):
        return (4, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "block_out_channels": (32, 64),
            "down_block_types": ("CrossAttnDownBlock2D", "DownBlock2D"),
            "up_block_types": ("UpBlock2D", "CrossAttnUpBlock2D"),
            "cross_attention_dim": 32,
            "attention_head_dim": 8,
            "out_channels": 4,
            "in_channels": 4,
            "layers_per_block": 2,
            "sample_size": 32,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_gradient_checkpointing(self):
272
273
274
275
276
277
278
279
        # enable deterministic behavior for gradient checkpointing
        torch.use_deterministic_algorithms(True)

        # from torch docs: "A handful of CUDA operations are nondeterministic if the CUDA version is 10.2 or greater,
        # unless the environment variable CUBLAS_WORKSPACE_CONFIG=:4096:8 or CUBLAS_WORKSPACE_CONFIG=:16:8 is set."
        # https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html
        os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"

280
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
281
        model = self.model_class(**init_dict)
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
        model.to(torch_device)

        out = model(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model.zero_grad()
        out.sum().backward()

        # now we save the output and parameter gradients that we will use for comparison purposes with
        # the non-checkpointed run.
        output_not_checkpointed = out.data.clone()
        grad_not_checkpointed = {}
        for name, param in model.named_parameters():
            grad_not_checkpointed[name] = param.grad.data.clone()

        model.enable_gradient_checkpointing()
        out = model(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model.zero_grad()
        out.sum().backward()

        # now we save the output and parameter gradients that we will use for comparison purposes with
        # the non-checkpointed run.
        output_checkpointed = out.data.clone()
        grad_checkpointed = {}
        for name, param in model.named_parameters():
            grad_checkpointed[name] = param.grad.data.clone()

        # compare the output and parameters gradients
        self.assertTrue((output_checkpointed == output_not_checkpointed).all())
        for name in grad_checkpointed:
            self.assertTrue(torch.allclose(grad_checkpointed[name], grad_not_checkpointed[name], atol=5e-5))

316
317
318
319
        # disable deterministic behavior for gradient checkpointing
        del os.environ["CUBLAS_WORKSPACE_CONFIG"]
        torch.use_deterministic_algorithms(False)

320

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
#    TODO(Patrick) - Re-add this test after having cleaned up LDM
#    def test_output_pretrained_spatial_transformer(self):
#        model = UNetLDMModel.from_pretrained("fusing/unet-ldm-dummy-spatial")
#        model.eval()
#
#        torch.manual_seed(0)
#        if torch.cuda.is_available():
#            torch.cuda.manual_seed_all(0)
#
#        noise = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
#        context = torch.ones((1, 16, 64), dtype=torch.float32)
#        time_step = torch.tensor([10] * noise.shape[0])
#
#        with torch.no_grad():
#            output = model(noise, time_step, context=context)
#
#        output_slice = output[0, -1, -3:, -3:].flatten()
# fmt: off
#        expected_output_slice = torch.tensor([61.3445, 56.9005, 29.4339, 59.5497, 60.7375, 34.1719, 48.1951, 42.6569, 25.0890])
# fmt: on
#
#        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
#


class NCSNppModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNet2DModel

    @property
    def dummy_input(self, sizes=(32, 32)):
        batch_size = 4
        num_channels = 3

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
355
        time_step = torch.tensor(batch_size * [10]).to(dtype=torch.int32, device=torch_device)
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

        return {"sample": noise, "timestep": time_step}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "block_out_channels": [32, 64, 64, 64],
            "in_channels": 3,
            "layers_per_block": 1,
            "out_channels": 3,
            "time_embedding_type": "fourier",
            "norm_eps": 1e-6,
            "mid_block_scale_factor": math.sqrt(2.0),
            "norm_num_groups": None,
            "down_block_types": [
                "SkipDownBlock2D",
                "AttnSkipDownBlock2D",
                "SkipDownBlock2D",
                "SkipDownBlock2D",
            ],
            "up_block_types": [
                "SkipUpBlock2D",
                "SkipUpBlock2D",
                "AttnSkipUpBlock2D",
                "SkipUpBlock2D",
            ],
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

393
    @slow
394
395
396
397
398
399
400
401
402
403
404
405
406
    def test_from_pretrained_hub(self):
        model, loading_info = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        inputs = self.dummy_input
        noise = floats_tensor((4, 3) + (256, 256)).to(torch_device)
        inputs["sample"] = noise
        image = model(**inputs)

        assert image is not None, "Make sure output is not None"

407
    @slow
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
    def test_output_pretrained_ve_mid(self):
        model = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256")
        model.to(torch_device)

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        batch_size = 4
        num_channels = 3
        sizes = (256, 256)

        noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)

        with torch.no_grad():
424
            output = model(noise, time_step).sample
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
        expected_output_slice = torch.tensor([-4836.2231, -6487.1387, -3816.7969, -7964.9253, -10966.2842, -20043.6016, 8137.0571, 2340.3499, 544.6114])
        # fmt: on

        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))

    def test_output_pretrained_ve_large(self):
        model = UNet2DModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update")
        model.to(torch_device)

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)

        with torch.no_grad():
449
            output = model(noise, time_step).sample
450
451
452
453
454
455
456

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
        expected_output_slice = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256])
        # fmt: on

        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
457
458
459
460

    def test_forward_with_norm_groups(self):
        # not required for this model
        pass