freeu.md 4.26 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# Improve generation quality with FreeU

[[open-in-colab]]

The UNet is responsible for denoising during the reverse diffusion process, and there are two distinct features in its architecture: 

1. Backbone features primarily contribute to the denoising process
2. Skip features mainly introduce high-frequency features into the decoder module and can make the network overlook the semantics in the backbone features

However, the skip connection can sometimes introduce unnatural image details. [FreeU](https://hf.co/papers/2309.11497) is a technique for improving image quality by rebalancing the contributions from the UNet’s skip connections and backbone feature maps. 

FreeU is applied during inference and it does not require any additional training. The technique works for different tasks such as text-to-image, image-to-image, and text-to-video.

In this guide, you will apply FreeU to the [`StableDiffusionPipeline`], [`StableDiffusionXLPipeline`], and [`TextToVideoSDPipeline`].

## StableDiffusionPipeline

Load the pipeline: 

```py
from diffusers import DiffusionPipeline
import torch 

pipeline = DiffusionPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, safety_checker=None
).to("cuda")
```

Then enable the FreeU mechanism with the FreeU-specific hyperparameters. These values are scaling factors for the backbone and skip features.

```py
pipeline.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4)
```

The values above are from the official FreeU [code repository](https://github.com/ChenyangSi/FreeU) where you can also find [reference hyperparameters](https://github.com/ChenyangSi/FreeU#range-for-more-parameters) for different models.

<Tip>

Disable the FreeU mechanism by calling `disable_freeu()` on a pipeline.

</Tip>

And then run inference:

```py
prompt = "A squirrel eating a burger"
seed = 2023
image = pipeline(prompt, generator=torch.manual_seed(seed)).images[0]
```

The figure below compares non-FreeU and FreeU results respectively for the same hyperparameters used above (`prompt` and `seed`):

![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/freeu/sdv1_5_freeu.jpg)


Let's see how Stable Diffusion 2 results are impacted:

```py
from diffusers import DiffusionPipeline
import torch 

pipeline = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16, safety_checker=None
).to("cuda")

prompt = "A squirrel eating a burger"
seed = 2023

pipeline.enable_freeu(s1=0.9, s2=0.2, b1=1.1, b2=1.2)
image = pipeline(prompt, generator=torch.manual_seed(seed)).images[0]
```


![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/freeu/sdv2_1_freeu.jpg)

## Stable Diffusion XL

Finally, let's take a look at how FreeU affects Stable Diffusion XL results:

```py
from diffusers import DiffusionPipeline
import torch 

pipeline = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16,
).to("cuda")

prompt = "A squirrel eating a burger"
seed = 2023

# Comes from 
# https://wandb.ai/nasirk24/UNET-FreeU-SDXL/reports/FreeU-SDXL-Optimal-Parameters--Vmlldzo1NDg4NTUw
pipeline.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
image = pipeline(prompt, generator=torch.manual_seed(seed)).images[0]
```


![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/freeu/sdxl_freeu.jpg)

## Text-to-video generation

FreeU can also be used to improve video quality:

```python
from diffusers import DiffusionPipeline
from diffusers.utils import export_to_video
import torch

model_id = "cerspense/zeroscope_v2_576w"
pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_576w", torch_dtype=torch.float16).to("cuda")
pipe = pipe.to("cuda")

prompt = "an astronaut riding a horse on mars"
seed = 2023

# The values come from
# https://github.com/lyn-rgb/FreeU_Diffusers#video-pipelines
pipe.enable_freeu(b1=1.2, b2=1.4, s1=0.9, s2=0.2)
video_frames = pipe(prompt, height=320, width=576, num_frames=30, generator=torch.manual_seed(seed)).frames
export_to_video(video_frames, "astronaut_rides_horse.mp4")
```

Thanks to [kadirnar](https://github.com/kadirnar/) for helping to integrate the feature, and to [justindujardin](https://github.com/justindujardin) for the helpful discussions.