unet_glide.py 18.6 KB
Newer Older
anton-l's avatar
anton-l committed
1
import torch
anton-l's avatar
anton-l committed
2
3
4
import torch.nn as nn
import torch.nn.functional as F

Patrick von Platen's avatar
Patrick von Platen committed
5
6
from ..configuration_utils import ConfigMixin
from ..modeling_utils import ModelMixin
Patrick von Platen's avatar
Patrick von Platen committed
7
from .attention import AttentionBlock
8
from .embeddings import get_timestep_embedding
Patrick von Platen's avatar
Patrick von Platen committed
9
from .resnet import Downsample, ResBlock, TimestepBlock, Upsample
anton-l's avatar
anton-l committed
10

anton-l's avatar
anton-l committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

def convert_module_to_f16(l):
    """
    Convert primitive modules to float16.
    """
    if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
        l.weight.data = l.weight.data.half()
        if l.bias is not None:
            l.bias.data = l.bias.data.half()


def convert_module_to_f32(l):
    """
    Convert primitive modules to float32, undoing convert_module_to_f16().
    """
    if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
        l.weight.data = l.weight.data.float()
        if l.bias is not None:
            l.bias.data = l.bias.data.float()


def avg_pool_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D average pooling module.
    """
    if dims == 1:
        return nn.AvgPool1d(*args, **kwargs)
    elif dims == 2:
        return nn.AvgPool2d(*args, **kwargs)
    elif dims == 3:
        return nn.AvgPool3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def conv_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.Conv1d(*args, **kwargs)
    elif dims == 2:
        return nn.Conv2d(*args, **kwargs)
    elif dims == 3:
        return nn.Conv3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def linear(*args, **kwargs):
    """
    Create a linear module.
    """
    return nn.Linear(*args, **kwargs)


class GroupNorm32(nn.GroupNorm):
    def __init__(self, num_groups, num_channels, swish, eps=1e-5):
        super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps)
        self.swish = swish

    def forward(self, x):
        y = super().forward(x.float()).to(x.dtype)
        if self.swish == 1.0:
            y = F.silu(y)
        elif self.swish:
            y = y * F.sigmoid(y * float(self.swish))
        return y


def normalization(channels, swish=0.0):
    """
    Make a standard normalization layer, with an optional swish activation.

Patrick von Platen's avatar
Patrick von Platen committed
83
    :param channels: number of input channels. :return: an nn.Module for normalization.
anton-l's avatar
anton-l committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
    """
    return GroupNorm32(num_channels=channels, num_groups=32, swish=swish)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
    """
Patrick von Platen's avatar
Patrick von Platen committed
99
    A sequential module that passes timestep embeddings to the children that support it as an extra input.
anton-l's avatar
anton-l committed
100
101
102
103
104
105
106
107
108
109
110
111
112
    """

    def forward(self, x, emb, encoder_out=None):
        for layer in self:
            if isinstance(layer, TimestepBlock):
                x = layer(x, emb)
            elif isinstance(layer, AttentionBlock):
                x = layer(x, encoder_out)
            else:
                x = layer(x)
        return x


Patrick von Platen's avatar
Patrick von Platen committed
113
class GlideUNetModel(ModelMixin, ConfigMixin):
anton-l's avatar
anton-l committed
114
115
116
    """
    The full UNet model with attention and timestep embedding.

Patrick von Platen's avatar
Patrick von Platen committed
117
118
    :param in_channels: channels in the input Tensor. :param model_channels: base channel count for the model. :param
    out_channels: channels in the output Tensor. :param num_res_blocks: number of residual blocks per downsample.
anton-l's avatar
anton-l committed
119
    :param attention_resolutions: a collection of downsample rates at which
Patrick von Platen's avatar
Patrick von Platen committed
120
121
122
123
        attention will take place. May be a set, list, or tuple. For example, if this contains 4, then at 4x
        downsampling, attention will be used.
    :param dropout: the dropout probability. :param channel_mult: channel multiplier for each level of the UNet. :param
    conv_resample: if True, use learned convolutions for upsampling and
anton-l's avatar
anton-l committed
124
        downsampling.
Patrick von Platen's avatar
Patrick von Platen committed
125
126
    :param dims: determines if the signal is 1D, 2D, or 3D. :param num_classes: if specified (as an int), then this
    model will be
anton-l's avatar
anton-l committed
127
        class-conditional with `num_classes` classes.
Patrick von Platen's avatar
Patrick von Platen committed
128
129
    :param use_checkpoint: use gradient checkpointing to reduce memory usage. :param num_heads: the number of attention
    heads in each attention layer. :param num_heads_channels: if specified, ignore num_heads and instead use
anton-l's avatar
anton-l committed
130
131
132
                               a fixed channel width per attention head.
    :param num_heads_upsample: works with num_heads to set a different number
                               of heads for upsampling. Deprecated.
Patrick von Platen's avatar
Patrick von Platen committed
133
134
    :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. :param resblock_updown: use residual blocks
    for up/downsampling.
anton-l's avatar
anton-l committed
135
136
137
138
    """

    def __init__(
        self,
139
        in_channels=3,
anton-l's avatar
anton-l committed
140
        resolution=64,
141
142
143
144
        model_channels=192,
        out_channels=6,
        num_res_blocks=3,
        attention_resolutions=(2, 4, 8),
anton-l's avatar
anton-l committed
145
146
147
148
149
150
151
152
153
154
155
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        use_checkpoint=False,
        use_fp16=False,
        num_heads=1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
anton-l's avatar
anton-l committed
156
        transformer_dim=None,
anton-l's avatar
anton-l committed
157
158
159
160
161
162
163
    ):
        super().__init__()

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        self.in_channels = in_channels
anton-l's avatar
anton-l committed
164
        self.resolution = resolution
anton-l's avatar
anton-l committed
165
166
167
168
169
170
171
172
        self.model_channels = model_channels
        self.out_channels = out_channels
        self.num_res_blocks = num_res_blocks
        self.attention_resolutions = attention_resolutions
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.use_checkpoint = use_checkpoint
anton-l's avatar
Style  
anton-l committed
173
        # self.dtype = torch.float16 if use_fp16 else torch.float32
anton-l's avatar
anton-l committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample

        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
            linear(model_channels, time_embed_dim),
            nn.SiLU(),
            linear(time_embed_dim, time_embed_dim),
        )

        ch = input_ch = int(channel_mult[0] * model_channels)
        self.input_blocks = nn.ModuleList([TimestepEmbedSequential(conv_nd(dims, in_channels, ch, 3, padding=1))])
        self._feature_size = ch
        input_block_chans = [ch]
        ds = 1
        for level, mult in enumerate(channel_mult):
            for _ in range(num_res_blocks):
                layers = [
                    ResBlock(
                        ch,
                        time_embed_dim,
                        dropout,
                        out_channels=int(mult * model_channels),
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
                    )
                ]
                ch = int(mult * model_channels)
                if ds in attention_resolutions:
                    layers.append(
                        AttentionBlock(
                            ch,
                            use_checkpoint=use_checkpoint,
                            num_heads=num_heads,
                            num_head_channels=num_head_channels,
anton-l's avatar
anton-l committed
211
                            encoder_channels=transformer_dim,
anton-l's avatar
anton-l committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
                        )
                    )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
                        ResBlock(
                            ch,
                            time_embed_dim,
                            dropout,
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            down=True,
                        )
                        if resblock_updown
patil-suraj's avatar
patil-suraj committed
232
233
234
                        else Downsample(
                            ch, use_conv=conv_resample, dims=dims, out_channels=out_ch, padding=1, name="op"
                        )
anton-l's avatar
anton-l committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
                self._feature_size += ch

        self.middle_block = TimestepEmbedSequential(
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
            AttentionBlock(
                ch,
                use_checkpoint=use_checkpoint,
                num_heads=num_heads,
                num_head_channels=num_head_channels,
anton-l's avatar
anton-l committed
256
                encoder_channels=transformer_dim,
anton-l's avatar
anton-l committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
            ),
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
        )
        self._feature_size += ch

        self.output_blocks = nn.ModuleList([])
        for level, mult in list(enumerate(channel_mult))[::-1]:
            for i in range(num_res_blocks + 1):
                ich = input_block_chans.pop()
                layers = [
                    ResBlock(
                        ch + ich,
                        time_embed_dim,
                        dropout,
                        out_channels=int(model_channels * mult),
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
                    )
                ]
                ch = int(model_channels * mult)
                if ds in attention_resolutions:
                    layers.append(
                        AttentionBlock(
                            ch,
                            use_checkpoint=use_checkpoint,
                            num_heads=num_heads_upsample,
                            num_head_channels=num_head_channels,
anton-l's avatar
anton-l committed
292
                            encoder_channels=transformer_dim,
anton-l's avatar
anton-l committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
                        )
                    )
                if level and i == num_res_blocks:
                    out_ch = ch
                    layers.append(
                        ResBlock(
                            ch,
                            time_embed_dim,
                            dropout,
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            up=True,
                        )
                        if resblock_updown
patil-suraj's avatar
patil-suraj committed
309
                        else Upsample(ch, use_conv=conv_resample, dims=dims, out_channels=out_ch)
anton-l's avatar
anton-l committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
                    )
                    ds //= 2
                self.output_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch

        self.out = nn.Sequential(
            normalization(ch, swish=1.0),
            nn.Identity(),
            zero_module(conv_nd(dims, input_ch, out_channels, 3, padding=1)),
        )
        self.use_fp16 = use_fp16

    def convert_to_fp16(self):
        """
        Convert the torso of the model to float16.
        """
        self.input_blocks.apply(convert_module_to_f16)
        self.middle_block.apply(convert_module_to_f16)
        self.output_blocks.apply(convert_module_to_f16)

    def convert_to_fp32(self):
        """
        Convert the torso of the model to float32.
        """
        self.input_blocks.apply(convert_module_to_f32)
        self.middle_block.apply(convert_module_to_f32)
        self.output_blocks.apply(convert_module_to_f32)

338
    def forward(self, x, timesteps):
anton-l's avatar
anton-l committed
339
340
341
        """
        Apply the model to an input batch.

Patrick von Platen's avatar
Patrick von Platen committed
342
343
        :param x: an [N x C x ...] Tensor of inputs. :param timesteps: a 1-D batch of timesteps. :param y: an [N]
        Tensor of labels, if class-conditional. :return: an [N x C x ...] Tensor of outputs.
anton-l's avatar
anton-l committed
344
        """
anton-l's avatar
anton-l committed
345
346

        hs = []
347
348
349
        emb = self.time_embed(
            get_timestep_embedding(timesteps, self.model_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
        )
anton-l's avatar
anton-l committed
350
351
352
353
354
355
356
357
358
359
360
361
362

        h = x.type(self.dtype)
        for module in self.input_blocks:
            h = module(h, emb)
            hs.append(h)
        h = self.middle_block(h, emb)
        for module in self.output_blocks:
            h = torch.cat([h, hs.pop()], dim=1)
            h = module(h, emb)
        h = h.type(x.dtype)
        return self.out(h)


Patrick von Platen's avatar
Patrick von Platen committed
363
class GlideTextToImageUNetModel(GlideUNetModel):
anton-l's avatar
anton-l committed
364
365
366
367
368
369
    """
    A UNetModel that performs super-resolution.

    Expects an extra kwarg `low_res` to condition on a low-resolution image.
    """

370
    def __init__(
Patrick von Platen's avatar
Patrick von Platen committed
371
372
        self,
        in_channels=3,
anton-l's avatar
anton-l committed
373
        resolution=64,
Patrick von Platen's avatar
Patrick von Platen committed
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
        model_channels=192,
        out_channels=6,
        num_res_blocks=3,
        attention_resolutions=(2, 4, 8),
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        use_checkpoint=False,
        use_fp16=False,
        num_heads=1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
        transformer_dim=512,
390
391
392
    ):
        super().__init__(
            in_channels=in_channels,
anton-l's avatar
anton-l committed
393
            resolution=resolution,
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
            model_channels=model_channels,
            out_channels=out_channels,
            num_res_blocks=num_res_blocks,
            attention_resolutions=attention_resolutions,
            dropout=dropout,
            channel_mult=channel_mult,
            conv_resample=conv_resample,
            dims=dims,
            use_checkpoint=use_checkpoint,
            use_fp16=use_fp16,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            num_heads_upsample=num_heads_upsample,
            use_scale_shift_norm=use_scale_shift_norm,
            resblock_updown=resblock_updown,
Patrick von Platen's avatar
Patrick von Platen committed
409
            transformer_dim=transformer_dim,
410
        )
411
        self.register_to_config(
412
            in_channels=in_channels,
anton-l's avatar
anton-l committed
413
            resolution=resolution,
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
            model_channels=model_channels,
            out_channels=out_channels,
            num_res_blocks=num_res_blocks,
            attention_resolutions=attention_resolutions,
            dropout=dropout,
            channel_mult=channel_mult,
            conv_resample=conv_resample,
            dims=dims,
            use_checkpoint=use_checkpoint,
            use_fp16=use_fp16,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            num_heads_upsample=num_heads_upsample,
            use_scale_shift_norm=use_scale_shift_norm,
            resblock_updown=resblock_updown,
Patrick von Platen's avatar
Patrick von Platen committed
429
            transformer_dim=transformer_dim,
430
        )
anton-l's avatar
anton-l committed
431

432
        self.transformer_proj = nn.Linear(transformer_dim, self.model_channels * 4)
anton-l's avatar
anton-l committed
433
434

    def forward(self, x, timesteps, transformer_out=None):
anton-l's avatar
anton-l committed
435
        hs = []
436
437
438
        emb = self.time_embed(
            get_timestep_embedding(timesteps, self.model_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
        )
anton-l's avatar
anton-l committed
439
440
441
442
443

        # project the last token
        transformer_proj = self.transformer_proj(transformer_out[:, -1])
        transformer_out = transformer_out.permute(0, 2, 1)  # NLC -> NCL

444
445
        emb = emb + transformer_proj.to(emb)

anton-l's avatar
anton-l committed
446
        h = x
anton-l's avatar
anton-l committed
447
        for module in self.input_blocks:
448
            h = module(h, emb, transformer_out)
anton-l's avatar
anton-l committed
449
            hs.append(h)
450
        h = self.middle_block(h, emb, transformer_out)
anton-l's avatar
anton-l committed
451
        for module in self.output_blocks:
anton-l's avatar
anton-l committed
452
453
            other = hs.pop()
            h = torch.cat([h, other], dim=1)
454
            h = module(h, emb, transformer_out)
anton-l's avatar
anton-l committed
455
        return self.out(h)
anton-l's avatar
anton-l committed
456
457


Patrick von Platen's avatar
Patrick von Platen committed
458
class GlideSuperResUNetModel(GlideUNetModel):
anton-l's avatar
anton-l committed
459
460
461
462
463
464
    """
    A UNetModel that performs super-resolution.

    Expects an extra kwarg `low_res` to condition on a low-resolution image.
    """

465
    def __init__(
Patrick von Platen's avatar
Patrick von Platen committed
466
467
        self,
        in_channels=3,
anton-l's avatar
anton-l committed
468
        resolution=256,
Patrick von Platen's avatar
Patrick von Platen committed
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
        model_channels=192,
        out_channels=6,
        num_res_blocks=3,
        attention_resolutions=(2, 4, 8),
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        use_checkpoint=False,
        use_fp16=False,
        num_heads=1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
484
485
486
    ):
        super().__init__(
            in_channels=in_channels,
anton-l's avatar
anton-l committed
487
            resolution=resolution,
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
            model_channels=model_channels,
            out_channels=out_channels,
            num_res_blocks=num_res_blocks,
            attention_resolutions=attention_resolutions,
            dropout=dropout,
            channel_mult=channel_mult,
            conv_resample=conv_resample,
            dims=dims,
            use_checkpoint=use_checkpoint,
            use_fp16=use_fp16,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            num_heads_upsample=num_heads_upsample,
            use_scale_shift_norm=use_scale_shift_norm,
            resblock_updown=resblock_updown,
        )
504
        self.register_to_config(
505
            in_channels=in_channels,
anton-l's avatar
anton-l committed
506
            resolution=resolution,
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
            model_channels=model_channels,
            out_channels=out_channels,
            num_res_blocks=num_res_blocks,
            attention_resolutions=attention_resolutions,
            dropout=dropout,
            channel_mult=channel_mult,
            conv_resample=conv_resample,
            dims=dims,
            use_checkpoint=use_checkpoint,
            use_fp16=use_fp16,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            num_heads_upsample=num_heads_upsample,
            use_scale_shift_norm=use_scale_shift_norm,
            resblock_updown=resblock_updown,
        )
anton-l's avatar
anton-l committed
523

524
    def forward(self, x, timesteps, low_res=None):
anton-l's avatar
anton-l committed
525
526
527
        _, _, new_height, new_width = x.shape
        upsampled = F.interpolate(low_res, (new_height, new_width), mode="bilinear")
        x = torch.cat([x, upsampled], dim=1)
528
529

        hs = []
530
531
532
        emb = self.time_embed(
            get_timestep_embedding(timesteps, self.model_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
        )
533
534
535
536
537
538
539
540
541
542

        h = x
        for module in self.input_blocks:
            h = module(h, emb)
            hs.append(h)
        h = self.middle_block(h, emb)
        for module in self.output_blocks:
            h = torch.cat([h, hs.pop()], dim=1)
            h = module(h, emb)

Patrick von Platen's avatar
Patrick von Platen committed
543
        return self.out(h)