"megatron/core/parallel_state.py" did not exist on "9ad1944db1f97000377dc5aee36dcd656b1ae4a2"
test_group_offloading.py 23.2 KB
Newer Older
1
# Copyright 2025 HuggingFace Inc.
Aryan's avatar
Aryan committed
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import contextlib
Aryan's avatar
Aryan committed
16
17
18
19
import gc
import unittest

import torch
20
from parameterized import parameterized
Aryan's avatar
Aryan committed
21

22
from diffusers import AutoencoderKL
23
from diffusers.hooks import HookRegistry, ModelHook
Aryan's avatar
Aryan committed
24
25
26
from diffusers.models import ModelMixin
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.utils import get_logger
27
from diffusers.utils.import_utils import compare_versions
28
29

from ..testing_utils import (
30
31
32
33
34
35
    backend_empty_cache,
    backend_max_memory_allocated,
    backend_reset_peak_memory_stats,
    require_torch_accelerator,
    torch_device,
)
Aryan's avatar
Aryan committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72


class DummyBlock(torch.nn.Module):
    def __init__(self, in_features: int, hidden_features: int, out_features: int) -> None:
        super().__init__()

        self.proj_in = torch.nn.Linear(in_features, hidden_features)
        self.activation = torch.nn.ReLU()
        self.proj_out = torch.nn.Linear(hidden_features, out_features)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.proj_in(x)
        x = self.activation(x)
        x = self.proj_out(x)
        return x


class DummyModel(ModelMixin):
    def __init__(self, in_features: int, hidden_features: int, out_features: int, num_layers: int) -> None:
        super().__init__()

        self.linear_1 = torch.nn.Linear(in_features, hidden_features)
        self.activation = torch.nn.ReLU()
        self.blocks = torch.nn.ModuleList(
            [DummyBlock(hidden_features, hidden_features, hidden_features) for _ in range(num_layers)]
        )
        self.linear_2 = torch.nn.Linear(hidden_features, out_features)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.linear_1(x)
        x = self.activation(x)
        for block in self.blocks:
            x = block(x)
        x = self.linear_2(x)
        return x


73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# This model implementation contains one type of block (single_blocks) instantiated before another type of block (double_blocks).
# The invocation order of these blocks, however, is first the double_blocks and then the single_blocks.
# With group offloading implementation before https://github.com/huggingface/diffusers/pull/11375, such a modeling implementation
# would result in a device mismatch error because of the assumptions made by the code. The failure case occurs when using:
#   offload_type="block_level", num_blocks_per_group=2, use_stream=True
# Post the linked PR, the implementation will work as expected.
class DummyModelWithMultipleBlocks(ModelMixin):
    def __init__(
        self, in_features: int, hidden_features: int, out_features: int, num_layers: int, num_single_layers: int
    ) -> None:
        super().__init__()

        self.linear_1 = torch.nn.Linear(in_features, hidden_features)
        self.activation = torch.nn.ReLU()
        self.single_blocks = torch.nn.ModuleList(
            [DummyBlock(hidden_features, hidden_features, hidden_features) for _ in range(num_single_layers)]
        )
        self.double_blocks = torch.nn.ModuleList(
            [DummyBlock(hidden_features, hidden_features, hidden_features) for _ in range(num_layers)]
        )
        self.linear_2 = torch.nn.Linear(hidden_features, out_features)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.linear_1(x)
        x = self.activation(x)
        for block in self.double_blocks:
            x = block(x)
        for block in self.single_blocks:
            x = block(x)
        x = self.linear_2(x)
        return x


106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# Test for https://github.com/huggingface/diffusers/pull/12077
class DummyModelWithLayerNorm(ModelMixin):
    def __init__(self, in_features: int, hidden_features: int, out_features: int, num_layers: int) -> None:
        super().__init__()

        self.linear_1 = torch.nn.Linear(in_features, hidden_features)
        self.activation = torch.nn.ReLU()
        self.blocks = torch.nn.ModuleList(
            [DummyBlock(hidden_features, hidden_features, hidden_features) for _ in range(num_layers)]
        )
        self.layer_norm = torch.nn.LayerNorm(hidden_features, elementwise_affine=True)
        self.linear_2 = torch.nn.Linear(hidden_features, out_features)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.linear_1(x)
        x = self.activation(x)
        for block in self.blocks:
            x = block(x)
        x = self.layer_norm(x)
        x = self.linear_2(x)
        return x


Aryan's avatar
Aryan committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
class DummyPipeline(DiffusionPipeline):
    model_cpu_offload_seq = "model"

    def __init__(self, model: torch.nn.Module) -> None:
        super().__init__()

        self.register_modules(model=model)

    def __call__(self, x: torch.Tensor) -> torch.Tensor:
        for _ in range(2):
            x = x + 0.1 * self.model(x)
        return x


143
144
145
146
147
148
149
150
151
152
class LayerOutputTrackerHook(ModelHook):
    def __init__(self):
        super().__init__()
        self.outputs = []

    def post_forward(self, module, output):
        self.outputs.append(output)
        return output


153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# Model with only standalone computational layers at top level
class DummyModelWithStandaloneLayers(ModelMixin):
    def __init__(self, in_features: int, hidden_features: int, out_features: int) -> None:
        super().__init__()

        self.layer1 = torch.nn.Linear(in_features, hidden_features)
        self.activation = torch.nn.ReLU()
        self.layer2 = torch.nn.Linear(hidden_features, hidden_features)
        self.layer3 = torch.nn.Linear(hidden_features, out_features)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.layer1(x)
        x = self.activation(x)
        x = self.layer2(x)
        x = self.layer3(x)
        return x


# Model with deeply nested structure
class DummyModelWithDeeplyNestedBlocks(ModelMixin):
    def __init__(self, in_features: int, hidden_features: int, out_features: int) -> None:
        super().__init__()

        self.input_layer = torch.nn.Linear(in_features, hidden_features)
        self.container = ContainerWithNestedModuleList(hidden_features)
        self.output_layer = torch.nn.Linear(hidden_features, out_features)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.input_layer(x)
        x = self.container(x)
        x = self.output_layer(x)
        return x


class ContainerWithNestedModuleList(torch.nn.Module):
    def __init__(self, features: int) -> None:
        super().__init__()

        # Top-level computational layer
        self.proj_in = torch.nn.Linear(features, features)

        # Nested container with ModuleList
        self.nested_container = NestedContainer(features)

        # Another top-level computational layer
        self.proj_out = torch.nn.Linear(features, features)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.proj_in(x)
        x = self.nested_container(x)
        x = self.proj_out(x)
        return x


class NestedContainer(torch.nn.Module):
    def __init__(self, features: int) -> None:
        super().__init__()

        self.blocks = torch.nn.ModuleList([torch.nn.Linear(features, features), torch.nn.Linear(features, features)])
        self.norm = torch.nn.LayerNorm(features)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        for block in self.blocks:
            x = block(x)
        x = self.norm(x)
        return x


221
@require_torch_accelerator
Aryan's avatar
Aryan committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
class GroupOffloadTests(unittest.TestCase):
    in_features = 64
    hidden_features = 256
    out_features = 64
    num_layers = 4

    def setUp(self):
        with torch.no_grad():
            self.model = self.get_model()
            self.input = torch.randn((4, self.in_features)).to(torch_device)

    def tearDown(self):
        super().tearDown()

        del self.model
        del self.input
        gc.collect()
239
240
        backend_empty_cache(torch_device)
        backend_reset_peak_memory_stats(torch_device)
Aryan's avatar
Aryan committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254

    def get_model(self):
        torch.manual_seed(0)
        return DummyModel(
            in_features=self.in_features,
            hidden_features=self.hidden_features,
            out_features=self.out_features,
            num_layers=self.num_layers,
        )

    def test_offloading_forward_pass(self):
        @torch.no_grad()
        def run_forward(model):
            gc.collect()
255
256
            backend_empty_cache(torch_device)
            backend_reset_peak_memory_stats(torch_device)
Aryan's avatar
Aryan committed
257
258
259
260
261
262
263
264
265
            self.assertTrue(
                all(
                    module._diffusers_hook.get_hook("group_offloading") is not None
                    for module in model.modules()
                    if hasattr(module, "_diffusers_hook")
                )
            )
            model.eval()
            output = model(self.input)[0].cpu()
266
            max_memory_allocated = backend_max_memory_allocated(torch_device)
Aryan's avatar
Aryan committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
            return output, max_memory_allocated

        self.model.to(torch_device)
        output_without_group_offloading, mem_baseline = run_forward(self.model)
        self.model.to("cpu")

        model = self.get_model()
        model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
        output_with_group_offloading1, mem1 = run_forward(model)

        model = self.get_model()
        model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1)
        output_with_group_offloading2, mem2 = run_forward(model)

        model = self.get_model()
        model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1, use_stream=True)
        output_with_group_offloading3, mem3 = run_forward(model)

        model = self.get_model()
        model.enable_group_offload(torch_device, offload_type="leaf_level")
        output_with_group_offloading4, mem4 = run_forward(model)

        model = self.get_model()
        model.enable_group_offload(torch_device, offload_type="leaf_level", use_stream=True)
        output_with_group_offloading5, mem5 = run_forward(model)

        # Precision assertions - offloading should not impact the output
        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading1, atol=1e-5))
        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading2, atol=1e-5))
        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading3, atol=1e-5))
        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading4, atol=1e-5))
        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading5, atol=1e-5))

        # Memory assertions - offloading should reduce memory usage
301
        self.assertTrue(mem4 <= mem5 < mem2 <= mem3 < mem1 < mem_baseline)
Aryan's avatar
Aryan committed
302

303
304
    def test_warning_logged_if_group_offloaded_module_moved_to_accelerator(self):
        if torch.device(torch_device).type not in ["cuda", "xpu"]:
Aryan's avatar
Aryan committed
305
306
307
308
309
310
311
312
            return
        self.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
        logger = get_logger("diffusers.models.modeling_utils")
        logger.setLevel("INFO")
        with self.assertLogs(logger, level="WARNING") as cm:
            self.model.to(torch_device)
        self.assertIn(f"The module '{self.model.__class__.__name__}' is group offloaded", cm.output[0])

313
314
    def test_warning_logged_if_group_offloaded_pipe_moved_to_accelerator(self):
        if torch.device(torch_device).type not in ["cuda", "xpu"]:
Aryan's avatar
Aryan committed
315
316
317
318
319
320
321
322
323
            return
        pipe = DummyPipeline(self.model)
        self.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
        logger = get_logger("diffusers.pipelines.pipeline_utils")
        logger.setLevel("INFO")
        with self.assertLogs(logger, level="WARNING") as cm:
            pipe.to(torch_device)
        self.assertIn(f"The module '{self.model.__class__.__name__}' is group offloaded", cm.output[0])

324
325
326
327
    def test_error_raised_if_streams_used_and_no_accelerator_device(self):
        torch_accelerator_module = getattr(torch, torch_device, torch.cuda)
        original_is_available = torch_accelerator_module.is_available
        torch_accelerator_module.is_available = lambda: False
Aryan's avatar
Aryan committed
328
329
        with self.assertRaises(ValueError):
            self.model.enable_group_offload(
330
                onload_device=torch.device(torch_device), offload_type="leaf_level", use_stream=True
Aryan's avatar
Aryan committed
331
            )
332
        torch_accelerator_module.is_available = original_is_available
Aryan's avatar
Aryan committed
333
334
335
336

    def test_error_raised_if_supports_group_offloading_false(self):
        self.model._supports_group_offloading = False
        with self.assertRaisesRegex(ValueError, "does not support group offloading"):
337
            self.model.enable_group_offload(onload_device=torch.device(torch_device))
Aryan's avatar
Aryan committed
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361

    def test_error_raised_if_model_offloading_applied_on_group_offloaded_module(self):
        pipe = DummyPipeline(self.model)
        pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
        with self.assertRaisesRegex(ValueError, "You are trying to apply model/sequential CPU offloading"):
            pipe.enable_model_cpu_offload()

    def test_error_raised_if_sequential_offloading_applied_on_group_offloaded_module(self):
        pipe = DummyPipeline(self.model)
        pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
        with self.assertRaisesRegex(ValueError, "You are trying to apply model/sequential CPU offloading"):
            pipe.enable_sequential_cpu_offload()

    def test_error_raised_if_group_offloading_applied_on_model_offloaded_module(self):
        pipe = DummyPipeline(self.model)
        pipe.enable_model_cpu_offload()
        with self.assertRaisesRegex(ValueError, "Cannot apply group offloading"):
            pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)

    def test_error_raised_if_group_offloading_applied_on_sequential_offloaded_module(self):
        pipe = DummyPipeline(self.model)
        pipe.enable_sequential_cpu_offload()
        with self.assertRaisesRegex(ValueError, "Cannot apply group offloading"):
            pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
362
363

    def test_block_level_stream_with_invocation_order_different_from_initialization_order(self):
364
        if torch.device(torch_device).type not in ["cuda", "xpu"]:
365
            return
366

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
        model = DummyModelWithMultipleBlocks(
            in_features=self.in_features,
            hidden_features=self.hidden_features,
            out_features=self.out_features,
            num_layers=self.num_layers,
            num_single_layers=self.num_layers + 1,
        )
        model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1, use_stream=True)

        context = contextlib.nullcontext()
        if compare_versions("diffusers", "<=", "0.33.0"):
            # Will raise a device mismatch RuntimeError mentioning weights are on CPU but input is on device
            context = self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device")

        with context:
            model(self.input)
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

    @parameterized.expand([("block_level",), ("leaf_level",)])
    def test_block_level_offloading_with_parameter_only_module_group(self, offload_type: str):
        if torch.device(torch_device).type not in ["cuda", "xpu"]:
            return

        def apply_layer_output_tracker_hook(model: DummyModelWithLayerNorm):
            for name, module in model.named_modules():
                registry = HookRegistry.check_if_exists_or_initialize(module)
                hook = LayerOutputTrackerHook()
                registry.register_hook(hook, "layer_output_tracker")

        model_ref = DummyModelWithLayerNorm(128, 256, 128, 2)
        model = DummyModelWithLayerNorm(128, 256, 128, 2)

        model.load_state_dict(model_ref.state_dict(), strict=True)

        model_ref.to(torch_device)
        model.enable_group_offload(torch_device, offload_type=offload_type, num_blocks_per_group=1, use_stream=True)

        apply_layer_output_tracker_hook(model_ref)
        apply_layer_output_tracker_hook(model)

        x = torch.randn(2, 128).to(torch_device)

        out_ref = model_ref(x)
        out = model(x)
        self.assertTrue(torch.allclose(out_ref, out, atol=1e-5), "Outputs do not match.")

412
        num_repeats = 2
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
        for i in range(num_repeats):
            out_ref = model_ref(x)
            out = model(x)

        self.assertTrue(torch.allclose(out_ref, out, atol=1e-5), "Outputs do not match after multiple invocations.")

        for (ref_name, ref_module), (name, module) in zip(model_ref.named_modules(), model.named_modules()):
            assert ref_name == name
            ref_outputs = (
                HookRegistry.check_if_exists_or_initialize(ref_module).get_hook("layer_output_tracker").outputs
            )
            outputs = HookRegistry.check_if_exists_or_initialize(module).get_hook("layer_output_tracker").outputs
            cumulated_absmax = 0.0
            for i in range(len(outputs)):
                diff = ref_outputs[0] - outputs[i]
                absdiff = diff.abs()
                absmax = absdiff.max().item()
                cumulated_absmax += absmax
            self.assertLess(
                cumulated_absmax, 1e-5, f"Output differences for {name} exceeded threshold: {cumulated_absmax:.5f}"
            )
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568

    def test_vae_like_model_without_streams(self):
        """Test VAE-like model with block-level offloading but without streams."""
        if torch.device(torch_device).type not in ["cuda", "xpu"]:
            return

        config = self.get_autoencoder_kl_config()
        model = AutoencoderKL(**config)

        model_ref = AutoencoderKL(**config)
        model_ref.load_state_dict(model.state_dict(), strict=True)
        model_ref.to(torch_device)

        model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1, use_stream=False)

        x = torch.randn(2, 3, 32, 32).to(torch_device)

        with torch.no_grad():
            out_ref = model_ref(x).sample
            out = model(x).sample

        self.assertTrue(
            torch.allclose(out_ref, out, atol=1e-5), "Outputs do not match for VAE-like model without streams."
        )

    def test_model_with_only_standalone_layers(self):
        """Test that models with only standalone layers (no ModuleList/Sequential) work with block-level offloading."""
        if torch.device(torch_device).type not in ["cuda", "xpu"]:
            return

        model = DummyModelWithStandaloneLayers(in_features=64, hidden_features=128, out_features=64)

        model_ref = DummyModelWithStandaloneLayers(in_features=64, hidden_features=128, out_features=64)
        model_ref.load_state_dict(model.state_dict(), strict=True)
        model_ref.to(torch_device)

        model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1, use_stream=True)

        x = torch.randn(2, 64).to(torch_device)

        with torch.no_grad():
            for i in range(2):
                out_ref = model_ref(x)
                out = model(x)
                self.assertTrue(
                    torch.allclose(out_ref, out, atol=1e-5),
                    f"Outputs do not match at iteration {i} for model with standalone layers.",
                )

    @parameterized.expand([("block_level",), ("leaf_level",)])
    def test_standalone_conv_layers_with_both_offload_types(self, offload_type: str):
        """Test that standalone Conv2d layers work correctly with both block-level and leaf-level offloading."""
        if torch.device(torch_device).type not in ["cuda", "xpu"]:
            return

        config = self.get_autoencoder_kl_config()
        model = AutoencoderKL(**config)

        model_ref = AutoencoderKL(**config)
        model_ref.load_state_dict(model.state_dict(), strict=True)
        model_ref.to(torch_device)

        model.enable_group_offload(torch_device, offload_type=offload_type, num_blocks_per_group=1, use_stream=True)

        x = torch.randn(2, 3, 32, 32).to(torch_device)

        with torch.no_grad():
            out_ref = model_ref(x).sample
            out = model(x).sample

        self.assertTrue(
            torch.allclose(out_ref, out, atol=1e-5),
            f"Outputs do not match for standalone Conv layers with {offload_type}.",
        )

    def test_multiple_invocations_with_vae_like_model(self):
        """Test that multiple forward passes work correctly with VAE-like model."""
        if torch.device(torch_device).type not in ["cuda", "xpu"]:
            return

        config = self.get_autoencoder_kl_config()
        model = AutoencoderKL(**config)

        model_ref = AutoencoderKL(**config)
        model_ref.load_state_dict(model.state_dict(), strict=True)
        model_ref.to(torch_device)

        model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1, use_stream=True)

        x = torch.randn(2, 3, 32, 32).to(torch_device)

        with torch.no_grad():
            for i in range(2):
                out_ref = model_ref(x).sample
                out = model(x).sample
                self.assertTrue(torch.allclose(out_ref, out, atol=1e-5), f"Outputs do not match at iteration {i}.")

    def test_nested_container_parameters_offloading(self):
        """Test that parameters from non-computational layers in nested containers are handled correctly."""
        if torch.device(torch_device).type not in ["cuda", "xpu"]:
            return

        model = DummyModelWithDeeplyNestedBlocks(in_features=64, hidden_features=128, out_features=64)

        model_ref = DummyModelWithDeeplyNestedBlocks(in_features=64, hidden_features=128, out_features=64)
        model_ref.load_state_dict(model.state_dict(), strict=True)
        model_ref.to(torch_device)

        model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1, use_stream=True)

        x = torch.randn(2, 64).to(torch_device)

        with torch.no_grad():
            for i in range(2):
                out_ref = model_ref(x)
                out = model(x)
                self.assertTrue(
                    torch.allclose(out_ref, out, atol=1e-5),
                    f"Outputs do not match at iteration {i} for nested parameters.",
                )

    def get_autoencoder_kl_config(self, block_out_channels=None, norm_num_groups=None):
        block_out_channels = block_out_channels or [2, 4]
        norm_num_groups = norm_num_groups or 2
        init_dict = {
            "block_out_channels": block_out_channels,
            "in_channels": 3,
            "out_channels": 3,
            "down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels),
            "up_block_types": ["UpDecoderBlock2D"] * len(block_out_channels),
            "latent_channels": 4,
            "norm_num_groups": norm_num_groups,
            "layers_per_block": 1,
        }
        return init_dict