test_pipelines_auto.py 15.9 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
YiYi Xu's avatar
YiYi Xu committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
17
18
import os
import shutil
YiYi Xu's avatar
YiYi Xu committed
19
20
import unittest
from collections import OrderedDict
21
from pathlib import Path
YiYi Xu's avatar
YiYi Xu committed
22
23

import torch
24
from transformers import CLIPVisionConfig, CLIPVisionModelWithProjection
YiYi Xu's avatar
YiYi Xu committed
25
26
27
28
29
30

from diffusers import (
    AutoPipelineForImage2Image,
    AutoPipelineForInpainting,
    AutoPipelineForText2Image,
    ControlNetModel,
31
    DiffusionPipeline,
YiYi Xu's avatar
YiYi Xu committed
32
33
34
35
36
37
)
from diffusers.pipelines.auto_pipeline import (
    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
    AUTO_INPAINT_PIPELINES_MAPPING,
    AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
)
Dhruv Nair's avatar
Dhruv Nair committed
38
from diffusers.utils.testing_utils import slow
YiYi Xu's avatar
YiYi Xu committed
39
40
41
42
43
44
45
46
47
48
49
50
51


PRETRAINED_MODEL_REPO_MAPPING = OrderedDict(
    [
        ("stable-diffusion", "runwayml/stable-diffusion-v1-5"),
        ("if", "DeepFloyd/IF-I-XL-v1.0"),
        ("kandinsky", "kandinsky-community/kandinsky-2-1"),
        ("kandinsky22", "kandinsky-community/kandinsky-2-2-decoder"),
    ]
)


class AutoPipelineFastTest(unittest.TestCase):
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    @property
    def dummy_image_encoder(self):
        torch.manual_seed(0)
        config = CLIPVisionConfig(
            hidden_size=1,
            projection_dim=1,
            num_hidden_layers=1,
            num_attention_heads=1,
            image_size=1,
            intermediate_size=1,
            patch_size=1,
        )
        return CLIPVisionModelWithProjection(config)

YiYi Xu's avatar
YiYi Xu committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
    def test_from_pipe_consistent(self):
        pipe = AutoPipelineForText2Image.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-pipe", requires_safety_checker=False
        )
        original_config = dict(pipe.config)

        pipe = AutoPipelineForImage2Image.from_pipe(pipe)
        assert dict(pipe.config) == original_config

        pipe = AutoPipelineForText2Image.from_pipe(pipe)
        assert dict(pipe.config) == original_config

    def test_from_pipe_override(self):
        pipe = AutoPipelineForText2Image.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-pipe", requires_safety_checker=False
        )

        pipe = AutoPipelineForImage2Image.from_pipe(pipe, requires_safety_checker=True)
        assert pipe.config.requires_safety_checker is True

        pipe = AutoPipelineForText2Image.from_pipe(pipe, requires_safety_checker=True)
        assert pipe.config.requires_safety_checker is True

    def test_from_pipe_consistent_sdxl(self):
        pipe = AutoPipelineForImage2Image.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-xl-pipe",
            requires_aesthetics_score=True,
            force_zeros_for_empty_prompt=False,
        )

        original_config = dict(pipe.config)

        pipe = AutoPipelineForText2Image.from_pipe(pipe)
        pipe = AutoPipelineForImage2Image.from_pipe(pipe)

        assert dict(pipe.config) == original_config

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    def test_kwargs_local_files_only(self):
        repo = "hf-internal-testing/tiny-stable-diffusion-torch"
        tmpdirname = DiffusionPipeline.download(repo)
        tmpdirname = Path(tmpdirname)

        # edit commit_id to so that it's not the latest commit
        commit_id = tmpdirname.name
        new_commit_id = commit_id + "hug"

        ref_dir = tmpdirname.parent.parent / "refs/main"
        with open(ref_dir, "w") as f:
            f.write(new_commit_id)

        new_tmpdirname = tmpdirname.parent / new_commit_id
        os.rename(tmpdirname, new_tmpdirname)

        try:
            AutoPipelineForText2Image.from_pretrained(repo, local_files_only=True)
        except OSError:
            assert False, "not able to load local files"

        shutil.rmtree(tmpdirname.parent.parent)

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    def test_from_pipe_controlnet_text2img(self):
        pipe = AutoPipelineForText2Image.from_pretrained("hf-internal-testing/tiny-stable-diffusion-pipe")
        controlnet = ControlNetModel.from_pretrained("hf-internal-testing/tiny-controlnet")

        pipe = AutoPipelineForText2Image.from_pipe(pipe, controlnet=controlnet)
        assert pipe.__class__.__name__ == "StableDiffusionControlNetPipeline"
        assert "controlnet" in pipe.components

        pipe = AutoPipelineForText2Image.from_pipe(pipe, controlnet=None)
        assert pipe.__class__.__name__ == "StableDiffusionPipeline"
        assert "controlnet" not in pipe.components

    def test_from_pipe_controlnet_img2img(self):
        pipe = AutoPipelineForImage2Image.from_pretrained("hf-internal-testing/tiny-stable-diffusion-pipe")
        controlnet = ControlNetModel.from_pretrained("hf-internal-testing/tiny-controlnet")

        pipe = AutoPipelineForImage2Image.from_pipe(pipe, controlnet=controlnet)
        assert pipe.__class__.__name__ == "StableDiffusionControlNetImg2ImgPipeline"
        assert "controlnet" in pipe.components

        pipe = AutoPipelineForImage2Image.from_pipe(pipe, controlnet=None)
        assert pipe.__class__.__name__ == "StableDiffusionImg2ImgPipeline"
        assert "controlnet" not in pipe.components

    def test_from_pipe_controlnet_inpaint(self):
        pipe = AutoPipelineForInpainting.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
        controlnet = ControlNetModel.from_pretrained("hf-internal-testing/tiny-controlnet")

        pipe = AutoPipelineForInpainting.from_pipe(pipe, controlnet=controlnet)
        assert pipe.__class__.__name__ == "StableDiffusionControlNetInpaintPipeline"
        assert "controlnet" in pipe.components

        pipe = AutoPipelineForInpainting.from_pipe(pipe, controlnet=None)
        assert pipe.__class__.__name__ == "StableDiffusionInpaintPipeline"
        assert "controlnet" not in pipe.components

    def test_from_pipe_controlnet_new_task(self):
        pipe_text2img = AutoPipelineForText2Image.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
        controlnet = ControlNetModel.from_pretrained("hf-internal-testing/tiny-controlnet")

        pipe_control_img2img = AutoPipelineForImage2Image.from_pipe(pipe_text2img, controlnet=controlnet)
        assert pipe_control_img2img.__class__.__name__ == "StableDiffusionControlNetImg2ImgPipeline"
        assert "controlnet" in pipe_control_img2img.components

        pipe_inpaint = AutoPipelineForInpainting.from_pipe(pipe_control_img2img, controlnet=None)
        assert pipe_inpaint.__class__.__name__ == "StableDiffusionInpaintPipeline"
        assert "controlnet" not in pipe_inpaint.components

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
        # testing `from_pipe` for text2img controlnet
        ## 1. from a different controlnet pipe, without controlnet argument
        pipe_control_text2img = AutoPipelineForText2Image.from_pipe(pipe_control_img2img)
        assert pipe_control_text2img.__class__.__name__ == "StableDiffusionControlNetPipeline"
        assert "controlnet" in pipe_control_text2img.components

        ## 2. from a different controlnet pipe, with controlnet argument
        pipe_control_text2img = AutoPipelineForText2Image.from_pipe(pipe_control_img2img, controlnet=controlnet)
        assert pipe_control_text2img.__class__.__name__ == "StableDiffusionControlNetPipeline"
        assert "controlnet" in pipe_control_text2img.components

        ## 3. from same controlnet pipeline class, with a different controlnet component
        pipe_control_text2img = AutoPipelineForText2Image.from_pipe(pipe_control_text2img, controlnet=controlnet)
        assert pipe_control_text2img.__class__.__name__ == "StableDiffusionControlNetPipeline"
        assert "controlnet" in pipe_control_text2img.components

        # testing from_pipe for inpainting
        ## 1. from a different controlnet pipeline class
        pipe_control_inpaint = AutoPipelineForInpainting.from_pipe(pipe_control_img2img)
        assert pipe_control_inpaint.__class__.__name__ == "StableDiffusionControlNetInpaintPipeline"
        assert "controlnet" in pipe_control_inpaint.components

        ## from a different controlnet pipe, with a different controlnet
        pipe_control_inpaint = AutoPipelineForInpainting.from_pipe(pipe_control_img2img, controlnet=controlnet)
        assert pipe_control_inpaint.__class__.__name__ == "StableDiffusionControlNetInpaintPipeline"
        assert "controlnet" in pipe_control_inpaint.components

        ## from same controlnet pipe, with a different controlnet
        pipe_control_inpaint = AutoPipelineForInpainting.from_pipe(pipe_control_inpaint, controlnet=controlnet)
        assert pipe_control_inpaint.__class__.__name__ == "StableDiffusionControlNetInpaintPipeline"
        assert "controlnet" in pipe_control_inpaint.components

        # testing from_pipe from img2img controlnet
        ## from a different controlnet pipe, without controlnet argument
        pipe_control_img2img = AutoPipelineForImage2Image.from_pipe(pipe_control_text2img)
        assert pipe_control_img2img.__class__.__name__ == "StableDiffusionControlNetImg2ImgPipeline"
        assert "controlnet" in pipe_control_img2img.components

        # from a different controlnet pipe, with a different controlnet component
        pipe_control_img2img = AutoPipelineForImage2Image.from_pipe(pipe_control_text2img, controlnet=controlnet)
        assert pipe_control_img2img.__class__.__name__ == "StableDiffusionControlNetImg2ImgPipeline"
        assert "controlnet" in pipe_control_img2img.components

        # from same controlnet pipeline class, with a different controlnet
        pipe_control_img2img = AutoPipelineForImage2Image.from_pipe(pipe_control_img2img, controlnet=controlnet)
        assert pipe_control_img2img.__class__.__name__ == "StableDiffusionControlNetImg2ImgPipeline"
        assert "controlnet" in pipe_control_img2img.components

222
223
224
225
226
227
228
229
230
231
232
233
234
235
    def test_from_pipe_optional_components(self):
        image_encoder = self.dummy_image_encoder

        pipe = AutoPipelineForText2Image.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-pipe",
            image_encoder=image_encoder,
        )

        pipe = AutoPipelineForImage2Image.from_pipe(pipe)
        assert pipe.image_encoder is not None

        pipe = AutoPipelineForText2Image.from_pipe(pipe, image_encoder=None)
        assert pipe.image_encoder is None

YiYi Xu's avatar
YiYi Xu committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

@slow
class AutoPipelineIntegrationTest(unittest.TestCase):
    def test_pipe_auto(self):
        for model_name, model_repo in PRETRAINED_MODEL_REPO_MAPPING.items():
            # test txt2img
            pipe_txt2img = AutoPipelineForText2Image.from_pretrained(
                model_repo, variant="fp16", torch_dtype=torch.float16
            )
            self.assertIsInstance(pipe_txt2img, AUTO_TEXT2IMAGE_PIPELINES_MAPPING[model_name])

            pipe_to = AutoPipelineForText2Image.from_pipe(pipe_txt2img)
            self.assertIsInstance(pipe_to, AUTO_TEXT2IMAGE_PIPELINES_MAPPING[model_name])

            pipe_to = AutoPipelineForImage2Image.from_pipe(pipe_txt2img)
            self.assertIsInstance(pipe_to, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING[model_name])

            if "kandinsky" not in model_name:
                pipe_to = AutoPipelineForInpainting.from_pipe(pipe_txt2img)
                self.assertIsInstance(pipe_to, AUTO_INPAINT_PIPELINES_MAPPING[model_name])

            del pipe_txt2img, pipe_to
            gc.collect()

            # test img2img

            pipe_img2img = AutoPipelineForImage2Image.from_pretrained(
                model_repo, variant="fp16", torch_dtype=torch.float16
            )
            self.assertIsInstance(pipe_img2img, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING[model_name])

            pipe_to = AutoPipelineForText2Image.from_pipe(pipe_img2img)
            self.assertIsInstance(pipe_to, AUTO_TEXT2IMAGE_PIPELINES_MAPPING[model_name])

            pipe_to = AutoPipelineForImage2Image.from_pipe(pipe_img2img)
            self.assertIsInstance(pipe_to, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING[model_name])

            if "kandinsky" not in model_name:
                pipe_to = AutoPipelineForInpainting.from_pipe(pipe_img2img)
                self.assertIsInstance(pipe_to, AUTO_INPAINT_PIPELINES_MAPPING[model_name])

            del pipe_img2img, pipe_to
            gc.collect()

            # test inpaint

            if "kandinsky" not in model_name:
                pipe_inpaint = AutoPipelineForInpainting.from_pretrained(
                    model_repo, variant="fp16", torch_dtype=torch.float16
                )
                self.assertIsInstance(pipe_inpaint, AUTO_INPAINT_PIPELINES_MAPPING[model_name])

                pipe_to = AutoPipelineForText2Image.from_pipe(pipe_inpaint)
                self.assertIsInstance(pipe_to, AUTO_TEXT2IMAGE_PIPELINES_MAPPING[model_name])

                pipe_to = AutoPipelineForImage2Image.from_pipe(pipe_inpaint)
                self.assertIsInstance(pipe_to, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING[model_name])

                pipe_to = AutoPipelineForInpainting.from_pipe(pipe_inpaint)
                self.assertIsInstance(pipe_to, AUTO_INPAINT_PIPELINES_MAPPING[model_name])

                del pipe_inpaint, pipe_to
                gc.collect()

    def test_from_pipe_consistent(self):
        for model_name, model_repo in PRETRAINED_MODEL_REPO_MAPPING.items():
            if model_name in ["kandinsky", "kandinsky22"]:
                auto_pipes = [AutoPipelineForText2Image, AutoPipelineForImage2Image]
            else:
                auto_pipes = [AutoPipelineForText2Image, AutoPipelineForImage2Image, AutoPipelineForInpainting]

            # test from_pretrained
            for pipe_from_class in auto_pipes:
                pipe_from = pipe_from_class.from_pretrained(model_repo, variant="fp16", torch_dtype=torch.float16)
                pipe_from_config = dict(pipe_from.config)

                for pipe_to_class in auto_pipes:
                    pipe_to = pipe_to_class.from_pipe(pipe_from)
                    self.assertEqual(dict(pipe_to.config), pipe_from_config)

                del pipe_from, pipe_to
                gc.collect()

    def test_controlnet(self):
        # test from_pretrained
        model_repo = "runwayml/stable-diffusion-v1-5"
        controlnet_repo = "lllyasviel/sd-controlnet-canny"

        controlnet = ControlNetModel.from_pretrained(controlnet_repo, torch_dtype=torch.float16)

        pipe_txt2img = AutoPipelineForText2Image.from_pretrained(
            model_repo, controlnet=controlnet, torch_dtype=torch.float16
        )
        self.assertIsInstance(pipe_txt2img, AUTO_TEXT2IMAGE_PIPELINES_MAPPING["stable-diffusion-controlnet"])

        pipe_img2img = AutoPipelineForImage2Image.from_pretrained(
            model_repo, controlnet=controlnet, torch_dtype=torch.float16
        )
        self.assertIsInstance(pipe_img2img, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["stable-diffusion-controlnet"])

        pipe_inpaint = AutoPipelineForInpainting.from_pretrained(
            model_repo, controlnet=controlnet, torch_dtype=torch.float16
        )
        self.assertIsInstance(pipe_inpaint, AUTO_INPAINT_PIPELINES_MAPPING["stable-diffusion-controlnet"])

        # test from_pipe
        for pipe_from in [pipe_txt2img, pipe_img2img, pipe_inpaint]:
            pipe_to = AutoPipelineForText2Image.from_pipe(pipe_from)
            self.assertIsInstance(pipe_to, AUTO_TEXT2IMAGE_PIPELINES_MAPPING["stable-diffusion-controlnet"])
            self.assertEqual(dict(pipe_to.config), dict(pipe_txt2img.config))

            pipe_to = AutoPipelineForImage2Image.from_pipe(pipe_from)
            self.assertIsInstance(pipe_to, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["stable-diffusion-controlnet"])
            self.assertEqual(dict(pipe_to.config), dict(pipe_img2img.config))

            pipe_to = AutoPipelineForInpainting.from_pipe(pipe_from)
            self.assertIsInstance(pipe_to, AUTO_INPAINT_PIPELINES_MAPPING["stable-diffusion-controlnet"])
            self.assertEqual(dict(pipe_to.config), dict(pipe_inpaint.config))