convert_ltx_to_diffusers.py 18.6 KB
Newer Older
Aryan's avatar
Aryan committed
1
import argparse
Aryan's avatar
Aryan committed
2
from pathlib import Path
Aryan's avatar
Aryan committed
3
4
5
from typing import Any, Dict

import torch
Aryan's avatar
Aryan committed
6
from accelerate import init_empty_weights
Aryan's avatar
Aryan committed
7
8
9
from safetensors.torch import load_file
from transformers import T5EncoderModel, T5Tokenizer

Aryan's avatar
Aryan committed
10
11
12
13
14
15
16
17
18
from diffusers import (
    AutoencoderKLLTXVideo,
    FlowMatchEulerDiscreteScheduler,
    LTXConditionPipeline,
    LTXLatentUpsamplePipeline,
    LTXPipeline,
    LTXVideoTransformer3DModel,
)
from diffusers.pipelines.ltx.modeling_latent_upsampler import LTXLatentUpsamplerModel
Aryan's avatar
Aryan committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33


def remove_keys_(key: str, state_dict: Dict[str, Any]):
    state_dict.pop(key)


TOKENIZER_MAX_LENGTH = 128

TRANSFORMER_KEYS_RENAME_DICT = {
    "patchify_proj": "proj_in",
    "adaln_single": "time_embed",
    "q_norm": "norm_q",
    "k_norm": "norm_k",
}

Aryan's avatar
Aryan committed
34
35
36
TRANSFORMER_SPECIAL_KEYS_REMAP = {
    "vae": remove_keys_,
}
Aryan's avatar
Aryan committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

VAE_KEYS_RENAME_DICT = {
    # decoder
    "up_blocks.0": "mid_block",
    "up_blocks.1": "up_blocks.0",
    "up_blocks.2": "up_blocks.1.upsamplers.0",
    "up_blocks.3": "up_blocks.1",
    "up_blocks.4": "up_blocks.2.conv_in",
    "up_blocks.5": "up_blocks.2.upsamplers.0",
    "up_blocks.6": "up_blocks.2",
    "up_blocks.7": "up_blocks.3.conv_in",
    "up_blocks.8": "up_blocks.3.upsamplers.0",
    "up_blocks.9": "up_blocks.3",
    # encoder
    "down_blocks.0": "down_blocks.0",
    "down_blocks.1": "down_blocks.0.downsamplers.0",
    "down_blocks.2": "down_blocks.0.conv_out",
    "down_blocks.3": "down_blocks.1",
    "down_blocks.4": "down_blocks.1.downsamplers.0",
    "down_blocks.5": "down_blocks.1.conv_out",
    "down_blocks.6": "down_blocks.2",
    "down_blocks.7": "down_blocks.2.downsamplers.0",
    "down_blocks.8": "down_blocks.3",
    "down_blocks.9": "mid_block",
    # common
    "conv_shortcut": "conv_shortcut.conv",
    "res_blocks": "resnets",
    "norm3.norm": "norm3",
    "per_channel_statistics.mean-of-means": "latents_mean",
    "per_channel_statistics.std-of-means": "latents_std",
}

Aryan's avatar
Aryan committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
VAE_091_RENAME_DICT = {
    # decoder
    "up_blocks.0": "mid_block",
    "up_blocks.1": "up_blocks.0.upsamplers.0",
    "up_blocks.2": "up_blocks.0",
    "up_blocks.3": "up_blocks.1.upsamplers.0",
    "up_blocks.4": "up_blocks.1",
    "up_blocks.5": "up_blocks.2.upsamplers.0",
    "up_blocks.6": "up_blocks.2",
    "up_blocks.7": "up_blocks.3.upsamplers.0",
    "up_blocks.8": "up_blocks.3",
    # common
    "last_time_embedder": "time_embedder",
    "last_scale_shift_table": "scale_shift_table",
}

Aryan's avatar
Aryan committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
VAE_095_RENAME_DICT = {
    # decoder
    "up_blocks.0": "mid_block",
    "up_blocks.1": "up_blocks.0.upsamplers.0",
    "up_blocks.2": "up_blocks.0",
    "up_blocks.3": "up_blocks.1.upsamplers.0",
    "up_blocks.4": "up_blocks.1",
    "up_blocks.5": "up_blocks.2.upsamplers.0",
    "up_blocks.6": "up_blocks.2",
    "up_blocks.7": "up_blocks.3.upsamplers.0",
    "up_blocks.8": "up_blocks.3",
    # encoder
    "down_blocks.0": "down_blocks.0",
    "down_blocks.1": "down_blocks.0.downsamplers.0",
    "down_blocks.2": "down_blocks.1",
    "down_blocks.3": "down_blocks.1.downsamplers.0",
    "down_blocks.4": "down_blocks.2",
    "down_blocks.5": "down_blocks.2.downsamplers.0",
    "down_blocks.6": "down_blocks.3",
    "down_blocks.7": "down_blocks.3.downsamplers.0",
    "down_blocks.8": "mid_block",
    # common
    "last_time_embedder": "time_embedder",
    "last_scale_shift_table": "scale_shift_table",
}

Aryan's avatar
Aryan committed
111
112
113
114
VAE_SPECIAL_KEYS_REMAP = {
    "per_channel_statistics.channel": remove_keys_,
    "per_channel_statistics.mean-of-means": remove_keys_,
    "per_channel_statistics.mean-of-stds": remove_keys_,
Aryan's avatar
Aryan committed
115
116
117
    "model.diffusion_model": remove_keys_,
}

Aryan's avatar
Aryan committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

def get_state_dict(saved_dict: Dict[str, Any]) -> Dict[str, Any]:
    state_dict = saved_dict
    if "model" in saved_dict.keys():
        state_dict = state_dict["model"]
    if "module" in saved_dict.keys():
        state_dict = state_dict["module"]
    if "state_dict" in saved_dict.keys():
        state_dict = state_dict["state_dict"]
    return state_dict


def update_state_dict_inplace(state_dict: Dict[str, Any], old_key: str, new_key: str) -> Dict[str, Any]:
    state_dict[new_key] = state_dict.pop(old_key)


Aryan's avatar
Aryan committed
134
def convert_transformer(ckpt_path: str, config, dtype: torch.dtype):
Aryan's avatar
Aryan committed
135
    PREFIX_KEY = "model.diffusion_model."
Aryan's avatar
Aryan committed
136
137

    original_state_dict = get_state_dict(load_file(ckpt_path))
Aryan's avatar
Aryan committed
138
    with init_empty_weights():
Aryan's avatar
Aryan committed
139
        transformer = LTXVideoTransformer3DModel(**config)
Aryan's avatar
Aryan committed
140
141

    for key in list(original_state_dict.keys()):
Aryan's avatar
Aryan committed
142
143
144
        new_key = key[:]
        if new_key.startswith(PREFIX_KEY):
            new_key = key[len(PREFIX_KEY) :]
Aryan's avatar
Aryan committed
145
146
147
148
149
150
151
152
153
154
        for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT.items():
            new_key = new_key.replace(replace_key, rename_key)
        update_state_dict_inplace(original_state_dict, key, new_key)

    for key in list(original_state_dict.keys()):
        for special_key, handler_fn_inplace in TRANSFORMER_SPECIAL_KEYS_REMAP.items():
            if special_key not in key:
                continue
            handler_fn_inplace(key, original_state_dict)

Aryan's avatar
Aryan committed
155
    transformer.load_state_dict(original_state_dict, strict=True, assign=True)
Aryan's avatar
Aryan committed
156
157
158
    return transformer


Aryan's avatar
Aryan committed
159
160
161
def convert_vae(ckpt_path: str, config, dtype: torch.dtype):
    PREFIX_KEY = "vae."

Aryan's avatar
Aryan committed
162
    original_state_dict = get_state_dict(load_file(ckpt_path))
Aryan's avatar
Aryan committed
163
164
    with init_empty_weights():
        vae = AutoencoderKLLTXVideo(**config)
Aryan's avatar
Aryan committed
165
166
167

    for key in list(original_state_dict.keys()):
        new_key = key[:]
Aryan's avatar
Aryan committed
168
169
        if new_key.startswith(PREFIX_KEY):
            new_key = key[len(PREFIX_KEY) :]
Aryan's avatar
Aryan committed
170
171
172
173
174
175
176
177
178
179
        for replace_key, rename_key in VAE_KEYS_RENAME_DICT.items():
            new_key = new_key.replace(replace_key, rename_key)
        update_state_dict_inplace(original_state_dict, key, new_key)

    for key in list(original_state_dict.keys()):
        for special_key, handler_fn_inplace in VAE_SPECIAL_KEYS_REMAP.items():
            if special_key not in key:
                continue
            handler_fn_inplace(key, original_state_dict)

Aryan's avatar
Aryan committed
180
    vae.load_state_dict(original_state_dict, strict=True, assign=True)
Aryan's avatar
Aryan committed
181
182
183
    return vae


Aryan's avatar
Aryan committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
def convert_spatial_latent_upsampler(ckpt_path: str, config, dtype: torch.dtype):
    original_state_dict = get_state_dict(load_file(ckpt_path))

    with init_empty_weights():
        latent_upsampler = LTXLatentUpsamplerModel(**config)

    latent_upsampler.load_state_dict(original_state_dict, strict=True, assign=True)
    latent_upsampler.to(dtype)
    return latent_upsampler


def get_transformer_config(version: str) -> Dict[str, Any]:
    if version == "0.9.7":
        config = {
            "in_channels": 128,
            "out_channels": 128,
            "patch_size": 1,
            "patch_size_t": 1,
            "num_attention_heads": 32,
            "attention_head_dim": 128,
            "cross_attention_dim": 4096,
            "num_layers": 48,
            "activation_fn": "gelu-approximate",
            "qk_norm": "rms_norm_across_heads",
            "norm_elementwise_affine": False,
            "norm_eps": 1e-6,
            "caption_channels": 4096,
            "attention_bias": True,
            "attention_out_bias": True,
        }
    else:
        config = {
            "in_channels": 128,
            "out_channels": 128,
            "patch_size": 1,
            "patch_size_t": 1,
            "num_attention_heads": 32,
            "attention_head_dim": 64,
            "cross_attention_dim": 2048,
            "num_layers": 28,
            "activation_fn": "gelu-approximate",
            "qk_norm": "rms_norm_across_heads",
            "norm_elementwise_affine": False,
            "norm_eps": 1e-6,
            "caption_channels": 4096,
            "attention_bias": True,
            "attention_out_bias": True,
        }
    return config


Aryan's avatar
Aryan committed
235
def get_vae_config(version: str) -> Dict[str, Any]:
Aryan's avatar
Aryan committed
236
    if version in ["0.9.0"]:
Aryan's avatar
Aryan committed
237
238
239
240
241
        config = {
            "in_channels": 3,
            "out_channels": 3,
            "latent_channels": 128,
            "block_out_channels": (128, 256, 512, 512),
Aryan's avatar
Aryan committed
242
243
244
245
246
247
            "down_block_types": (
                "LTXVideoDownBlock3D",
                "LTXVideoDownBlock3D",
                "LTXVideoDownBlock3D",
                "LTXVideoDownBlock3D",
            ),
Aryan's avatar
Aryan committed
248
249
250
251
252
253
            "decoder_block_out_channels": (128, 256, 512, 512),
            "layers_per_block": (4, 3, 3, 3, 4),
            "decoder_layers_per_block": (4, 3, 3, 3, 4),
            "spatio_temporal_scaling": (True, True, True, False),
            "decoder_spatio_temporal_scaling": (True, True, True, False),
            "decoder_inject_noise": (False, False, False, False, False),
Aryan's avatar
Aryan committed
254
            "downsample_type": ("conv", "conv", "conv", "conv"),
Aryan's avatar
Aryan committed
255
256
257
258
259
260
261
262
263
264
            "upsample_residual": (False, False, False, False),
            "upsample_factor": (1, 1, 1, 1),
            "patch_size": 4,
            "patch_size_t": 1,
            "resnet_norm_eps": 1e-6,
            "scaling_factor": 1.0,
            "encoder_causal": True,
            "decoder_causal": False,
            "timestep_conditioning": False,
        }
Aryan's avatar
Aryan committed
265
    elif version in ["0.9.1"]:
Aryan's avatar
Aryan committed
266
267
268
269
270
        config = {
            "in_channels": 3,
            "out_channels": 3,
            "latent_channels": 128,
            "block_out_channels": (128, 256, 512, 512),
Aryan's avatar
Aryan committed
271
272
273
274
275
276
            "down_block_types": (
                "LTXVideoDownBlock3D",
                "LTXVideoDownBlock3D",
                "LTXVideoDownBlock3D",
                "LTXVideoDownBlock3D",
            ),
Aryan's avatar
Aryan committed
277
278
279
280
281
282
            "decoder_block_out_channels": (256, 512, 1024),
            "layers_per_block": (4, 3, 3, 3, 4),
            "decoder_layers_per_block": (5, 6, 7, 8),
            "spatio_temporal_scaling": (True, True, True, False),
            "decoder_spatio_temporal_scaling": (True, True, True),
            "decoder_inject_noise": (True, True, True, False),
Aryan's avatar
Aryan committed
283
            "downsample_type": ("conv", "conv", "conv", "conv"),
Aryan's avatar
Aryan committed
284
285
286
287
288
289
290
291
292
293
294
            "upsample_residual": (True, True, True),
            "upsample_factor": (2, 2, 2),
            "timestep_conditioning": True,
            "patch_size": 4,
            "patch_size_t": 1,
            "resnet_norm_eps": 1e-6,
            "scaling_factor": 1.0,
            "encoder_causal": True,
            "decoder_causal": False,
        }
        VAE_KEYS_RENAME_DICT.update(VAE_091_RENAME_DICT)
Aryan's avatar
Aryan committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
    elif version in ["0.9.5"]:
        config = {
            "in_channels": 3,
            "out_channels": 3,
            "latent_channels": 128,
            "block_out_channels": (128, 256, 512, 1024, 2048),
            "down_block_types": (
                "LTXVideo095DownBlock3D",
                "LTXVideo095DownBlock3D",
                "LTXVideo095DownBlock3D",
                "LTXVideo095DownBlock3D",
            ),
            "decoder_block_out_channels": (256, 512, 1024),
            "layers_per_block": (4, 6, 6, 2, 2),
            "decoder_layers_per_block": (5, 5, 5, 5),
            "spatio_temporal_scaling": (True, True, True, True),
            "decoder_spatio_temporal_scaling": (True, True, True),
            "decoder_inject_noise": (False, False, False, False),
            "downsample_type": ("spatial", "temporal", "spatiotemporal", "spatiotemporal"),
            "upsample_residual": (True, True, True),
            "upsample_factor": (2, 2, 2),
            "timestep_conditioning": True,
            "patch_size": 4,
            "patch_size_t": 1,
            "resnet_norm_eps": 1e-6,
            "scaling_factor": 1.0,
            "encoder_causal": True,
            "decoder_causal": False,
            "spatial_compression_ratio": 32,
            "temporal_compression_ratio": 8,
        }
        VAE_KEYS_RENAME_DICT.update(VAE_095_RENAME_DICT)
    elif version in ["0.9.7"]:
Aryan's avatar
Aryan committed
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
        config = {
            "in_channels": 3,
            "out_channels": 3,
            "latent_channels": 128,
            "block_out_channels": (128, 256, 512, 1024, 2048),
            "down_block_types": (
                "LTXVideo095DownBlock3D",
                "LTXVideo095DownBlock3D",
                "LTXVideo095DownBlock3D",
                "LTXVideo095DownBlock3D",
            ),
            "decoder_block_out_channels": (256, 512, 1024),
            "layers_per_block": (4, 6, 6, 2, 2),
            "decoder_layers_per_block": (5, 5, 5, 5),
            "spatio_temporal_scaling": (True, True, True, True),
            "decoder_spatio_temporal_scaling": (True, True, True),
            "decoder_inject_noise": (False, False, False, False),
            "downsample_type": ("spatial", "temporal", "spatiotemporal", "spatiotemporal"),
            "upsample_residual": (True, True, True),
            "upsample_factor": (2, 2, 2),
            "timestep_conditioning": True,
            "patch_size": 4,
            "patch_size_t": 1,
            "resnet_norm_eps": 1e-6,
            "scaling_factor": 1.0,
            "encoder_causal": True,
            "decoder_causal": False,
            "spatial_compression_ratio": 32,
            "temporal_compression_ratio": 8,
        }
        VAE_KEYS_RENAME_DICT.update(VAE_095_RENAME_DICT)
Aryan's avatar
Aryan committed
359
360
361
    return config


Aryan's avatar
Aryan committed
362
363
364
365
366
367
368
369
370
371
def get_spatial_latent_upsampler_config(version: str) -> Dict[str, Any]:
    if version == "0.9.7":
        config = {
            "in_channels": 128,
            "mid_channels": 512,
            "num_blocks_per_stage": 4,
            "dims": 3,
            "spatial_upsample": True,
            "temporal_upsample": False,
        }
372
373
374
375
376
377
378
379
380
    elif version == "0.9.8":
        config = {
            "in_channels": 128,
            "mid_channels": 512,
            "num_blocks_per_stage": 4,
            "dims": 3,
            "spatial_upsample": True,
            "temporal_upsample": False,
        }
Aryan's avatar
Aryan committed
381
382
383
384
385
    else:
        raise ValueError(f"Unsupported version: {version}")
    return config


Aryan's avatar
Aryan committed
386
387
388
389
390
391
def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--transformer_ckpt_path", type=str, default=None, help="Path to original transformer checkpoint"
    )
    parser.add_argument("--vae_ckpt_path", type=str, default=None, help="Path to original vae checkpoint")
Aryan's avatar
Aryan committed
392
393
394
395
396
397
    parser.add_argument(
        "--spatial_latent_upsampler_path",
        type=str,
        default=None,
        help="Path to original spatial latent upsampler checkpoint",
    )
Aryan's avatar
Aryan committed
398
399
400
401
402
403
404
405
406
407
408
409
    parser.add_argument(
        "--text_encoder_cache_dir", type=str, default=None, help="Path to text encoder cache directory"
    )
    parser.add_argument(
        "--typecast_text_encoder",
        action="store_true",
        default=False,
        help="Whether or not to apply fp16/bf16 precision to text_encoder",
    )
    parser.add_argument("--save_pipeline", action="store_true")
    parser.add_argument("--output_path", type=str, required=True, help="Path where converted model should be saved")
    parser.add_argument("--dtype", default="fp32", help="Torch dtype to save the model in.")
Aryan's avatar
Aryan committed
410
    parser.add_argument(
Aryan's avatar
Aryan committed
411
412
413
        "--version",
        type=str,
        default="0.9.0",
414
        choices=["0.9.0", "0.9.1", "0.9.5", "0.9.7", "0.9.8"],
Aryan's avatar
Aryan committed
415
        help="Version of the LTX model",
Aryan's avatar
Aryan committed
416
    )
Aryan's avatar
Aryan committed
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
    return parser.parse_args()


DTYPE_MAPPING = {
    "fp32": torch.float32,
    "fp16": torch.float16,
    "bf16": torch.bfloat16,
}

VARIANT_MAPPING = {
    "fp32": None,
    "fp16": "fp16",
    "bf16": "bf16",
}


if __name__ == "__main__":
    args = get_args()

    transformer = None
    dtype = DTYPE_MAPPING[args.dtype]
    variant = VARIANT_MAPPING[args.dtype]
Aryan's avatar
Aryan committed
439
    output_path = Path(args.output_path)
Aryan's avatar
Aryan committed
440
441

    if args.transformer_ckpt_path is not None:
Aryan's avatar
Aryan committed
442
443
        config = get_transformer_config(args.version)
        transformer: LTXVideoTransformer3DModel = convert_transformer(args.transformer_ckpt_path, config, dtype)
Aryan's avatar
Aryan committed
444
445
        if not args.save_pipeline:
            transformer.save_pretrained(
Aryan's avatar
Aryan committed
446
                output_path / "transformer", safe_serialization=True, max_shard_size="5GB", variant=variant
Aryan's avatar
Aryan committed
447
448
449
            )

    if args.vae_ckpt_path is not None:
Aryan's avatar
Aryan committed
450
451
        config = get_vae_config(args.version)
        vae: AutoencoderKLLTXVideo = convert_vae(args.vae_ckpt_path, config, dtype)
Aryan's avatar
Aryan committed
452
        if not args.save_pipeline:
Aryan's avatar
Aryan committed
453
            vae.save_pretrained(output_path / "vae", safe_serialization=True, max_shard_size="5GB", variant=variant)
Aryan's avatar
Aryan committed
454

Aryan's avatar
Aryan committed
455
456
457
458
459
460
461
462
463
464
    if args.spatial_latent_upsampler_path is not None:
        config = get_spatial_latent_upsampler_config(args.version)
        latent_upsampler: LTXLatentUpsamplerModel = convert_spatial_latent_upsampler(
            args.spatial_latent_upsampler_path, config, dtype
        )
        if not args.save_pipeline:
            latent_upsampler.save_pretrained(
                output_path / "latent_upsampler", safe_serialization=True, max_shard_size="5GB", variant=variant
            )

Aryan's avatar
Aryan committed
465
466
467
468
469
470
471
472
473
474
475
476
    if args.save_pipeline:
        text_encoder_id = "google/t5-v1_1-xxl"
        tokenizer = T5Tokenizer.from_pretrained(text_encoder_id, model_max_length=TOKENIZER_MAX_LENGTH)
        text_encoder = T5EncoderModel.from_pretrained(text_encoder_id, cache_dir=args.text_encoder_cache_dir)

        if args.typecast_text_encoder:
            text_encoder = text_encoder.to(dtype=dtype)

        # Apparently, the conversion does not work anymore without this :shrug:
        for param in text_encoder.parameters():
            param.data = param.data.contiguous()

Aryan's avatar
Aryan committed
477
        if args.version in ["0.9.5", "0.9.7"]:
Aryan's avatar
Aryan committed
478
479
480
481
482
483
484
485
486
487
            scheduler = FlowMatchEulerDiscreteScheduler(use_dynamic_shifting=False)
        else:
            scheduler = FlowMatchEulerDiscreteScheduler(
                use_dynamic_shifting=True,
                base_shift=0.95,
                max_shift=2.05,
                base_image_seq_len=1024,
                max_image_seq_len=4096,
                shift_terminal=0.1,
            )
Aryan's avatar
Aryan committed
488

Aryan's avatar
Aryan committed
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
        if args.version in ["0.9.0", "0.9.1", "0.9.5"]:
            pipe = LTXPipeline(
                scheduler=scheduler,
                vae=vae,
                text_encoder=text_encoder,
                tokenizer=tokenizer,
                transformer=transformer,
            )
            pipe.save_pretrained(
                output_path.as_posix(), safe_serialization=True, variant=variant, max_shard_size="5GB"
            )
        elif args.version in ["0.9.7"]:
            pipe = LTXConditionPipeline(
                scheduler=scheduler,
                vae=vae,
                text_encoder=text_encoder,
                tokenizer=tokenizer,
                transformer=transformer,
            )
            pipe_upsample = LTXLatentUpsamplePipeline(
                vae=vae,
                latent_upsampler=latent_upsampler,
            )
            pipe.save_pretrained(
                (output_path / "ltx_pipeline").as_posix(),
                safe_serialization=True,
                variant=variant,
                max_shard_size="5GB",
            )
            pipe_upsample.save_pretrained(
                (output_path / "ltx_upsample_pipeline").as_posix(),
                safe_serialization=True,
                variant=variant,
                max_shard_size="5GB",
            )
        else:
            raise ValueError(f"Unsupported version: {args.version}")