modeling_ddpm.py 2.96 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.


Patrick von Platen's avatar
up  
Patrick von Platen committed
17
import torch
Patrick von Platen's avatar
Patrick von Platen committed
18

Patrick von Platen's avatar
Patrick von Platen committed
19
20
21
import tqdm
from diffusers import DiffusionPipeline

Patrick von Platen's avatar
Patrick von Platen committed
22
23

class DDPM(DiffusionPipeline):
Patrick von Platen's avatar
Patrick von Platen committed
24
    def __init__(self, unet, noise_scheduler):
Patrick von Platen's avatar
up  
Patrick von Platen committed
25
26
27
        super().__init__()
        self.register_modules(unet=unet, noise_scheduler=noise_scheduler)

Patrick von Platen's avatar
Patrick von Platen committed
28
29
30
    def __call__(self, batch_size=1, generator=None, torch_device=None):
        if torch_device is None:
            torch_device = "cuda" if torch.cuda.is_available() else "cpu"
Patrick von Platen's avatar
up  
Patrick von Platen committed
31
32

        self.unet.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
33
34

        # Sample gaussian noise to begin loop
Patrick von Platen's avatar
Patrick von Platen committed
35
36
37
38
39
        image = self.noise_scheduler.sample_noise(
            (batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution),
            device=torch_device,
            generator=generator,
        )
Patrick von Platen's avatar
up  
Patrick von Platen committed
40

Patrick von Platen's avatar
Patrick von Platen committed
41
42
        for t in tqdm.tqdm(reversed(range(len(self.noise_scheduler))), total=len(self.noise_scheduler)):
            # 1. predict noise residual
Patrick von Platen's avatar
up  
Patrick von Platen committed
43
44
45
            with torch.no_grad():
                noise_residual = self.unet(image, t)

Patrick von Platen's avatar
Patrick von Platen committed
46
47
48
49
50
51
52
            # 2. compute alphas, betas
            alpha_prod_t = self.noise_scheduler.get_alpha_prod(t)
            alpha_prod_t_prev = self.noise_scheduler.get_alpha_prod(t - 1)
            beta_prod_t = 1 - alpha_prod_t
            beta_prod_t_prev = 1 - alpha_prod_t_prev

            # 3. compute predicted image from residual
Patrick von Platen's avatar
up  
Patrick von Platen committed
53
            # See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison
Patrick von Platen's avatar
Patrick von Platen committed
54
55
56
            # First: Compute inner formula
            pred_mean = (1 / alpha_prod_t.sqrt()) * (image - beta_prod_t.sqrt() * noise_residual)
            # Second: Clip
Patrick von Platen's avatar
up  
Patrick von Platen committed
57
            pred_mean = torch.clamp(pred_mean, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
58
59
60
61
62
            # Third: Compute outer coefficients
            pred_mean_coeff = (alpha_prod_t_prev.sqrt() * self.noise_scheduler.get_beta(t)) / beta_prod_t
            image_coeff = (beta_prod_t_prev * self.noise_scheduler.get_alpha(t).sqrt()) / beta_prod_t 
            # Fourth: Compute outer formula
            prev_image = pred_mean_coeff * pred_mean + image_coeff * image
Patrick von Platen's avatar
up  
Patrick von Platen committed
63

Patrick von Platen's avatar
Patrick von Platen committed
64
            # 4. sample variance
Patrick von Platen's avatar
Patrick von Platen committed
65
66
67
            prev_variance = self.noise_scheduler.sample_variance(
                t, prev_image.shape, device=torch_device, generator=generator
            )
Patrick von Platen's avatar
up  
Patrick von Platen committed
68

Patrick von Platen's avatar
Patrick von Platen committed
69
            # 5. sample  x_{t-1} ~ N(prev_image, prev_variance) = add variance to predicted image
Patrick von Platen's avatar
up  
Patrick von Platen committed
70
71
            sampled_prev_image = prev_image + prev_variance
            image = sampled_prev_image
Patrick von Platen's avatar
Patrick von Platen committed
72
73

        return image