unet_2d_blocks_flax.py 12.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
13
# limitations under the License.
14
15
16
17

import flax.linen as nn
import jax.numpy as jnp

Will Berman's avatar
Will Berman committed
18
from .attention_flax import FlaxTransformer2DModel
19
20
21
22
from .resnet_flax import FlaxDownsample2D, FlaxResnetBlock2D, FlaxUpsample2D


class FlaxCrossAttnDownBlock2D(nn.Module):
Younes Belkada's avatar
Younes Belkada committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
    r"""
    Cross Attention 2D Downsizing block - original architecture from Unet transformers:
    https://arxiv.org/abs/2103.06104

    Parameters:
        in_channels (:obj:`int`):
            Input channels
        out_channels (:obj:`int`):
            Output channels
        dropout (:obj:`float`, *optional*, defaults to 0.0):
            Dropout rate
        num_layers (:obj:`int`, *optional*, defaults to 1):
            Number of attention blocks layers
        attn_num_head_channels (:obj:`int`, *optional*, defaults to 1):
            Number of attention heads of each spatial transformer block
        add_downsample (:obj:`bool`, *optional*, defaults to `True`):
            Whether to add downsampling layer before each final output
        dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
            Parameters `dtype`
    """
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    in_channels: int
    out_channels: int
    dropout: float = 0.0
    num_layers: int = 1
    attn_num_head_channels: int = 1
    add_downsample: bool = True
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        resnets = []
        attentions = []

        for i in range(self.num_layers):
            in_channels = self.in_channels if i == 0 else self.out_channels

            res_block = FlaxResnetBlock2D(
                in_channels=in_channels,
                out_channels=self.out_channels,
                dropout_prob=self.dropout,
                dtype=self.dtype,
            )
            resnets.append(res_block)

Will Berman's avatar
Will Berman committed
66
            attn_block = FlaxTransformer2DModel(
67
68
69
70
71
72
73
74
75
76
77
78
                in_channels=self.out_channels,
                n_heads=self.attn_num_head_channels,
                d_head=self.out_channels // self.attn_num_head_channels,
                depth=1,
                dtype=self.dtype,
            )
            attentions.append(attn_block)

        self.resnets = resnets
        self.attentions = attentions

        if self.add_downsample:
79
            self.downsamplers_0 = FlaxDownsample2D(self.out_channels, dtype=self.dtype)
80
81
82
83
84
85
86
87
88
89

    def __call__(self, hidden_states, temb, encoder_hidden_states, deterministic=True):
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb, deterministic=deterministic)
            hidden_states = attn(hidden_states, encoder_hidden_states, deterministic=deterministic)
            output_states += (hidden_states,)

        if self.add_downsample:
90
            hidden_states = self.downsamplers_0(hidden_states)
91
92
93
94
95
96
            output_states += (hidden_states,)

        return hidden_states, output_states


class FlaxDownBlock2D(nn.Module):
Younes Belkada's avatar
Younes Belkada committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    r"""
    Flax 2D downsizing block

    Parameters:
        in_channels (:obj:`int`):
            Input channels
        out_channels (:obj:`int`):
            Output channels
        dropout (:obj:`float`, *optional*, defaults to 0.0):
            Dropout rate
        num_layers (:obj:`int`, *optional*, defaults to 1):
            Number of attention blocks layers
        add_downsample (:obj:`bool`, *optional*, defaults to `True`):
            Whether to add downsampling layer before each final output
        dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
            Parameters `dtype`
    """
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
    in_channels: int
    out_channels: int
    dropout: float = 0.0
    num_layers: int = 1
    add_downsample: bool = True
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        resnets = []

        for i in range(self.num_layers):
            in_channels = self.in_channels if i == 0 else self.out_channels

            res_block = FlaxResnetBlock2D(
                in_channels=in_channels,
                out_channels=self.out_channels,
                dropout_prob=self.dropout,
                dtype=self.dtype,
            )
            resnets.append(res_block)
        self.resnets = resnets

        if self.add_downsample:
137
            self.downsamplers_0 = FlaxDownsample2D(self.out_channels, dtype=self.dtype)
138
139
140
141
142
143
144
145
146

    def __call__(self, hidden_states, temb, deterministic=True):
        output_states = ()

        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb, deterministic=deterministic)
            output_states += (hidden_states,)

        if self.add_downsample:
147
            hidden_states = self.downsamplers_0(hidden_states)
148
149
150
151
152
153
            output_states += (hidden_states,)

        return hidden_states, output_states


class FlaxCrossAttnUpBlock2D(nn.Module):
Younes Belkada's avatar
Younes Belkada committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    r"""
    Cross Attention 2D Upsampling block - original architecture from Unet transformers:
    https://arxiv.org/abs/2103.06104

    Parameters:
        in_channels (:obj:`int`):
            Input channels
        out_channels (:obj:`int`):
            Output channels
        dropout (:obj:`float`, *optional*, defaults to 0.0):
            Dropout rate
        num_layers (:obj:`int`, *optional*, defaults to 1):
            Number of attention blocks layers
        attn_num_head_channels (:obj:`int`, *optional*, defaults to 1):
            Number of attention heads of each spatial transformer block
        add_upsample (:obj:`bool`, *optional*, defaults to `True`):
            Whether to add upsampling layer before each final output
        dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
            Parameters `dtype`
    """
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    in_channels: int
    out_channels: int
    prev_output_channel: int
    dropout: float = 0.0
    num_layers: int = 1
    attn_num_head_channels: int = 1
    add_upsample: bool = True
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        resnets = []
        attentions = []

        for i in range(self.num_layers):
            res_skip_channels = self.in_channels if (i == self.num_layers - 1) else self.out_channels
            resnet_in_channels = self.prev_output_channel if i == 0 else self.out_channels

            res_block = FlaxResnetBlock2D(
                in_channels=resnet_in_channels + res_skip_channels,
                out_channels=self.out_channels,
                dropout_prob=self.dropout,
                dtype=self.dtype,
            )
            resnets.append(res_block)

Will Berman's avatar
Will Berman committed
199
            attn_block = FlaxTransformer2DModel(
200
201
202
203
204
205
206
207
208
209
210
211
                in_channels=self.out_channels,
                n_heads=self.attn_num_head_channels,
                d_head=self.out_channels // self.attn_num_head_channels,
                depth=1,
                dtype=self.dtype,
            )
            attentions.append(attn_block)

        self.resnets = resnets
        self.attentions = attentions

        if self.add_upsample:
212
            self.upsamplers_0 = FlaxUpsample2D(self.out_channels, dtype=self.dtype)
213
214
215
216
217
218
219
220
221
222
223
224

    def __call__(self, hidden_states, res_hidden_states_tuple, temb, encoder_hidden_states, deterministic=True):
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = jnp.concatenate((hidden_states, res_hidden_states), axis=-1)

            hidden_states = resnet(hidden_states, temb, deterministic=deterministic)
            hidden_states = attn(hidden_states, encoder_hidden_states, deterministic=deterministic)

        if self.add_upsample:
225
            hidden_states = self.upsamplers_0(hidden_states)
226
227
228
229
230

        return hidden_states


class FlaxUpBlock2D(nn.Module):
Younes Belkada's avatar
Younes Belkada committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    r"""
    Flax 2D upsampling block

    Parameters:
        in_channels (:obj:`int`):
            Input channels
        out_channels (:obj:`int`):
            Output channels
        prev_output_channel (:obj:`int`):
            Output channels from the previous block
        dropout (:obj:`float`, *optional*, defaults to 0.0):
            Dropout rate
        num_layers (:obj:`int`, *optional*, defaults to 1):
            Number of attention blocks layers
        add_downsample (:obj:`bool`, *optional*, defaults to `True`):
            Whether to add downsampling layer before each final output
        dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
            Parameters `dtype`
    """
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
    in_channels: int
    out_channels: int
    prev_output_channel: int
    dropout: float = 0.0
    num_layers: int = 1
    add_upsample: bool = True
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        resnets = []

        for i in range(self.num_layers):
            res_skip_channels = self.in_channels if (i == self.num_layers - 1) else self.out_channels
            resnet_in_channels = self.prev_output_channel if i == 0 else self.out_channels

            res_block = FlaxResnetBlock2D(
                in_channels=resnet_in_channels + res_skip_channels,
                out_channels=self.out_channels,
                dropout_prob=self.dropout,
                dtype=self.dtype,
            )
            resnets.append(res_block)

        self.resnets = resnets

        if self.add_upsample:
276
            self.upsamplers_0 = FlaxUpsample2D(self.out_channels, dtype=self.dtype)
277
278
279
280
281
282
283
284
285
286
287

    def __call__(self, hidden_states, res_hidden_states_tuple, temb, deterministic=True):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = jnp.concatenate((hidden_states, res_hidden_states), axis=-1)

            hidden_states = resnet(hidden_states, temb, deterministic=deterministic)

        if self.add_upsample:
288
            hidden_states = self.upsamplers_0(hidden_states)
289
290
291
292
293

        return hidden_states


class FlaxUNetMidBlock2DCrossAttn(nn.Module):
Younes Belkada's avatar
Younes Belkada committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
    r"""
    Cross Attention 2D Mid-level block - original architecture from Unet transformers: https://arxiv.org/abs/2103.06104

    Parameters:
        in_channels (:obj:`int`):
            Input channels
        dropout (:obj:`float`, *optional*, defaults to 0.0):
            Dropout rate
        num_layers (:obj:`int`, *optional*, defaults to 1):
            Number of attention blocks layers
        attn_num_head_channels (:obj:`int`, *optional*, defaults to 1):
            Number of attention heads of each spatial transformer block
        dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
            Parameters `dtype`
    """
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
    in_channels: int
    dropout: float = 0.0
    num_layers: int = 1
    attn_num_head_channels: int = 1
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        # there is always at least one resnet
        resnets = [
            FlaxResnetBlock2D(
                in_channels=self.in_channels,
                out_channels=self.in_channels,
                dropout_prob=self.dropout,
                dtype=self.dtype,
            )
        ]

        attentions = []

        for _ in range(self.num_layers):
Will Berman's avatar
Will Berman committed
329
            attn_block = FlaxTransformer2DModel(
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
                in_channels=self.in_channels,
                n_heads=self.attn_num_head_channels,
                d_head=self.in_channels // self.attn_num_head_channels,
                depth=1,
                dtype=self.dtype,
            )
            attentions.append(attn_block)

            res_block = FlaxResnetBlock2D(
                in_channels=self.in_channels,
                out_channels=self.in_channels,
                dropout_prob=self.dropout,
                dtype=self.dtype,
            )
            resnets.append(res_block)

        self.resnets = resnets
        self.attentions = attentions

    def __call__(self, hidden_states, temb, encoder_hidden_states, deterministic=True):
        hidden_states = self.resnets[0](hidden_states, temb)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
            hidden_states = attn(hidden_states, encoder_hidden_states, deterministic=deterministic)
            hidden_states = resnet(hidden_states, temb, deterministic=deterministic)

        return hidden_states