dynamic_modules_utils.py 22.5 KB
Newer Older
patil-suraj's avatar
patil-suraj committed
1
# coding=utf-8
2
# Copyright 2025 The HuggingFace Inc. team.
patil-suraj's avatar
patil-suraj committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities to dynamically load objects from the Hub."""

import importlib
Patrick von Platen's avatar
Patrick von Platen committed
18
import inspect
19
import json
patil-suraj's avatar
patil-suraj committed
20
21
22
import os
import re
import shutil
YiYi Xu's avatar
YiYi Xu committed
23
import signal
patil-suraj's avatar
patil-suraj committed
24
import sys
YiYi Xu's avatar
YiYi Xu committed
25
import threading
patil-suraj's avatar
patil-suraj committed
26
from pathlib import Path
YiYi Xu's avatar
YiYi Xu committed
27
from types import ModuleType
patil-suraj's avatar
patil-suraj committed
28
from typing import Dict, Optional, Union
29
from urllib import request
patil-suraj's avatar
patil-suraj committed
30

31
32
from huggingface_hub import hf_hub_download, model_info
from huggingface_hub.utils import RevisionNotFoundError, validate_hf_hub_args
33
from packaging import version
Patrick von Platen's avatar
Patrick von Platen committed
34

35
36
from .. import __version__
from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging
patil-suraj's avatar
patil-suraj committed
37
38
39
40


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

41
42
# See https://huggingface.co/datasets/diffusers/community-pipelines-mirror
COMMUNITY_PIPELINES_MIRROR_ID = "diffusers/community-pipelines-mirror"
YiYi Xu's avatar
YiYi Xu committed
43
44
TIME_OUT_REMOTE_CODE = int(os.getenv("DIFFUSERS_TIMEOUT_REMOTE_CODE", 15))
_HF_REMOTE_CODE_LOCK = threading.Lock()
45

patil-suraj's avatar
patil-suraj committed
46

47
48
49
def get_diffusers_versions():
    url = "https://pypi.org/pypi/diffusers/json"
    releases = json.loads(request.urlopen(url).read())["releases"].keys()
50
    return sorted(releases, key=lambda x: version.Version(x))
51
52


patil-suraj's avatar
patil-suraj committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
def init_hf_modules():
    """
    Creates the cache directory for modules with an init, and adds it to the Python path.
    """
    # This function has already been executed if HF_MODULES_CACHE already is in the Python path.
    if HF_MODULES_CACHE in sys.path:
        return

    sys.path.append(HF_MODULES_CACHE)
    os.makedirs(HF_MODULES_CACHE, exist_ok=True)
    init_path = Path(HF_MODULES_CACHE) / "__init__.py"
    if not init_path.exists():
        init_path.touch()


def create_dynamic_module(name: Union[str, os.PathLike]):
    """
    Creates a dynamic module in the cache directory for modules.
    """
    init_hf_modules()
    dynamic_module_path = Path(HF_MODULES_CACHE) / name
    # If the parent module does not exist yet, recursively create it.
    if not dynamic_module_path.parent.exists():
        create_dynamic_module(dynamic_module_path.parent)
    os.makedirs(dynamic_module_path, exist_ok=True)
    init_path = dynamic_module_path / "__init__.py"
    if not init_path.exists():
        init_path.touch()


def get_relative_imports(module_file):
    """
    Get the list of modules that are relatively imported in a module file.

    Args:
        module_file (`str` or `os.PathLike`): The module file to inspect.
    """
    with open(module_file, "r", encoding="utf-8") as f:
        content = f.read()

    # Imports of the form `import .xxx`
94
    relative_imports = re.findall(r"^\s*import\s+\.(\S+)\s*$", content, flags=re.MULTILINE)
patil-suraj's avatar
patil-suraj committed
95
    # Imports of the form `from .xxx import yyy`
96
    relative_imports += re.findall(r"^\s*from\s+\.(\S+)\s+import", content, flags=re.MULTILINE)
patil-suraj's avatar
patil-suraj committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
    # Unique-ify
    return list(set(relative_imports))


def get_relative_import_files(module_file):
    """
    Get the list of all files that are needed for a given module. Note that this function recurses through the relative
    imports (if a imports b and b imports c, it will return module files for b and c).

    Args:
        module_file (`str` or `os.PathLike`): The module file to inspect.
    """
    no_change = False
    files_to_check = [module_file]
    all_relative_imports = []

    # Let's recurse through all relative imports
    while not no_change:
        new_imports = []
        for f in files_to_check:
            new_imports.extend(get_relative_imports(f))

        module_path = Path(module_file).parent
        new_import_files = [str(module_path / m) for m in new_imports]
        new_import_files = [f for f in new_import_files if f not in all_relative_imports]
        files_to_check = [f"{f}.py" for f in new_import_files]

        no_change = len(new_import_files) == 0
        all_relative_imports.extend(files_to_check)

    return all_relative_imports


def check_imports(filename):
    """
    Check if the current Python environment contains all the libraries that are imported in a file.
    """
    with open(filename, "r", encoding="utf-8") as f:
        content = f.read()

    # Imports of the form `import xxx`
138
    imports = re.findall(r"^\s*import\s+(\S+)\s*$", content, flags=re.MULTILINE)
patil-suraj's avatar
patil-suraj committed
139
    # Imports of the form `from xxx import yyy`
140
    imports += re.findall(r"^\s*from\s+(\S+)\s+import", content, flags=re.MULTILINE)
patil-suraj's avatar
patil-suraj committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    # Only keep the top-level module
    imports = [imp.split(".")[0] for imp in imports if not imp.startswith(".")]

    # Unique-ify and test we got them all
    imports = list(set(imports))
    missing_packages = []
    for imp in imports:
        try:
            importlib.import_module(imp)
        except ImportError:
            missing_packages.append(imp)

    if len(missing_packages) > 0:
        raise ImportError(
            "This modeling file requires the following packages that were not found in your environment: "
            f"{', '.join(missing_packages)}. Run `pip install {' '.join(missing_packages)}`"
        )

    return get_relative_imports(filename)


YiYi Xu's avatar
YiYi Xu committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
def _raise_timeout_error(signum, frame):
    raise ValueError(
        "Loading this model requires you to execute custom code contained in the model repository on your local "
        "machine. Please set the option `trust_remote_code=True` to permit loading of this model."
    )


def resolve_trust_remote_code(trust_remote_code, model_name, has_remote_code):
    if trust_remote_code is None:
        if has_remote_code and TIME_OUT_REMOTE_CODE > 0:
            prev_sig_handler = None
            try:
                prev_sig_handler = signal.signal(signal.SIGALRM, _raise_timeout_error)
                signal.alarm(TIME_OUT_REMOTE_CODE)
                while trust_remote_code is None:
                    answer = input(
                        f"The repository for {model_name} contains custom code which must be executed to correctly "
                        f"load the model. You can inspect the repository content at https://hf.co/{model_name}.\n"
                        f"You can avoid this prompt in future by passing the argument `trust_remote_code=True`.\n\n"
                        f"Do you wish to run the custom code? [y/N] "
                    )
                    if answer.lower() in ["yes", "y", "1"]:
                        trust_remote_code = True
                    elif answer.lower() in ["no", "n", "0", ""]:
                        trust_remote_code = False
                signal.alarm(0)
            except Exception:
                # OS which does not support signal.SIGALRM
                raise ValueError(
                    f"The repository for {model_name} contains custom code which must be executed to correctly "
                    f"load the model. You can inspect the repository content at https://hf.co/{model_name}.\n"
                    f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
                )
            finally:
                if prev_sig_handler is not None:
                    signal.signal(signal.SIGALRM, prev_sig_handler)
                    signal.alarm(0)
        elif has_remote_code:
            # For the CI which puts the timeout at 0
            _raise_timeout_error(None, None)

    if has_remote_code and not trust_remote_code:
        raise ValueError(
            f"Loading {model_name} requires you to execute the configuration file in that"
            " repo on your local machine. Make sure you have read the code there to avoid malicious use, then"
            " set the option `trust_remote_code=True` to remove this error."
        )

    return trust_remote_code


def get_class_in_module(class_name, module_path, force_reload=False):
patil-suraj's avatar
patil-suraj committed
214
215
216
    """
    Import a module on the cache directory for modules and extract a class from it.
    """
YiYi Xu's avatar
YiYi Xu committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    name = os.path.normpath(module_path)
    if name.endswith(".py"):
        name = name[:-3]
    name = name.replace(os.path.sep, ".")
    module_file: Path = Path(HF_MODULES_CACHE) / module_path

    with _HF_REMOTE_CODE_LOCK:
        if force_reload:
            sys.modules.pop(name, None)
            importlib.invalidate_caches()
        cached_module: Optional[ModuleType] = sys.modules.get(name)
        module_spec = importlib.util.spec_from_file_location(name, location=module_file)

        module: ModuleType
        if cached_module is None:
            module = importlib.util.module_from_spec(module_spec)
            # insert it into sys.modules before any loading begins
            sys.modules[name] = module
        else:
            module = cached_module
237

YiYi Xu's avatar
YiYi Xu committed
238
        module_spec.loader.exec_module(module)
Patrick von Platen's avatar
Patrick von Platen committed
239
240
241

    if class_name is None:
        return find_pipeline_class(module)
YiYi Xu's avatar
YiYi Xu committed
242

patil-suraj's avatar
patil-suraj committed
243
244
245
    return getattr(module, class_name)


Patrick von Platen's avatar
Patrick von Platen committed
246
247
248
249
250
def find_pipeline_class(loaded_module):
    """
    Retrieve pipeline class that inherits from `DiffusionPipeline`. Note that there has to be exactly one class
    inheriting from `DiffusionPipeline`.
    """
251
    from ..pipelines import DiffusionPipeline
Patrick von Platen's avatar
Patrick von Platen committed
252
253
254
255
256

    cls_members = dict(inspect.getmembers(loaded_module, inspect.isclass))

    pipeline_class = None
    for cls_name, cls in cls_members.items():
257
258
259
260
261
        if (
            cls_name != DiffusionPipeline.__name__
            and issubclass(cls, DiffusionPipeline)
            and cls.__module__.split(".")[0] != "diffusers"
        ):
Patrick von Platen's avatar
Patrick von Platen committed
262
263
264
265
266
267
268
269
270
271
272
            if pipeline_class is not None:
                raise ValueError(
                    f"Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:"
                    f" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in"
                    f" {loaded_module}."
                )
            pipeline_class = cls

    return pipeline_class


273
@validate_hf_hub_args
patil-suraj's avatar
patil-suraj committed
274
275
276
277
278
279
def get_cached_module_file(
    pretrained_model_name_or_path: Union[str, os.PathLike],
    module_file: str,
    cache_dir: Optional[Union[str, os.PathLike]] = None,
    force_download: bool = False,
    proxies: Optional[Dict[str, str]] = None,
280
    token: Optional[Union[bool, str]] = None,
patil-suraj's avatar
patil-suraj committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
    revision: Optional[str] = None,
    local_files_only: bool = False,
):
    """
    Prepares Downloads a module from a local folder or a distant repo and returns its path inside the cached
    Transformers module.

    Args:
        pretrained_model_name_or_path (`str` or `os.PathLike`):
            This can be either:

            - a string, the *model id* of a pretrained model configuration hosted inside a model repo on
              huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced
              under a user or organization name, like `dbmdz/bert-base-german-cased`.
            - a path to a *directory* containing a configuration file saved using the
              [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.

        module_file (`str`):
            The name of the module file containing the class to look for.
        cache_dir (`str` or `os.PathLike`, *optional*):
            Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
            cache should not be used.
        force_download (`bool`, *optional*, defaults to `False`):
            Whether or not to force to (re-)download the configuration files and override the cached versions if they
305
            exist.
patil-suraj's avatar
patil-suraj committed
306
307
308
        proxies (`Dict[str, str]`, *optional*):
            A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
            'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
309
        token (`str` or *bool*, *optional*):
patil-suraj's avatar
patil-suraj committed
310
311
312
313
314
315
316
317
318
319
320
            The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
            when running `transformers-cli login` (stored in `~/.huggingface`).
        revision (`str`, *optional*, defaults to `"main"`):
            The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
            git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
            identifier allowed by git.
        local_files_only (`bool`, *optional*, defaults to `False`):
            If `True`, will only try to load the tokenizer configuration from local files.

    <Tip>

321
322
    You may pass a token in `token` if you are not logged in (`hf auth login`) and want to use private or [gated
    models](https://huggingface.co/docs/hub/models-gated#gated-models).
patil-suraj's avatar
patil-suraj committed
323
324
325
326
327
328
329
330

    </Tip>

    Returns:
        `str`: The path to the module inside the cache.
    """
    # Download and cache module_file from the repo `pretrained_model_name_or_path` of grab it if it's a local file.
    pretrained_model_name_or_path = str(pretrained_model_name_or_path)
Patrick von Platen's avatar
Patrick von Platen committed
331

patil-suraj's avatar
patil-suraj committed
332
333
    module_file_or_url = os.path.join(pretrained_model_name_or_path, module_file)

Patrick von Platen's avatar
Patrick von Platen committed
334
335
    if os.path.isfile(module_file_or_url):
        resolved_module_file = module_file_or_url
Patrick von Platen's avatar
Patrick von Platen committed
336
337
        submodule = "local"
    elif pretrained_model_name_or_path.count("/") == 0:
338
339
340
341
342
343
        available_versions = get_diffusers_versions()
        # cut ".dev0"
        latest_version = "v" + ".".join(__version__.split(".")[:3])

        # retrieve github version that matches
        if revision is None:
344
            revision = latest_version if latest_version[1:] in available_versions else "main"
345
346
347
348
349
350
351
352
353
354
355
            logger.info(f"Defaulting to latest_version: {revision}.")
        elif revision in available_versions:
            revision = f"v{revision}"
        elif revision == "main":
            revision = revision
        else:
            raise ValueError(
                f"`custom_revision`: {revision} does not exist. Please make sure to choose one of"
                f" {', '.join(available_versions + ['main'])}."
            )

Patrick von Platen's avatar
Patrick von Platen committed
356
        try:
357
358
359
360
            resolved_module_file = hf_hub_download(
                repo_id=COMMUNITY_PIPELINES_MIRROR_ID,
                repo_type="dataset",
                filename=f"{revision}/{pretrained_model_name_or_path}.py",
Patrick von Platen's avatar
Patrick von Platen committed
361
362
363
364
365
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
            )
366
367
            submodule = "git"
            module_file = pretrained_model_name_or_path + ".py"
368
369
370
371
372
373
        except RevisionNotFoundError as e:
            raise EnvironmentError(
                f"Revision '{revision}' not found in the community pipelines mirror. Check available revisions on"
                " https://huggingface.co/datasets/diffusers/community-pipelines-mirror/tree/main."
                " If you don't find the revision you are looking for, please open an issue on https://github.com/huggingface/diffusers/issues."
            ) from e
Patrick von Platen's avatar
Patrick von Platen committed
374
375
376
        except EnvironmentError:
            logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}.")
            raise
Patrick von Platen's avatar
Patrick von Platen committed
377
378
379
    else:
        try:
            # Load from URL or cache if already cached
Patrick von Platen's avatar
Patrick von Platen committed
380
381
382
            resolved_module_file = hf_hub_download(
                pretrained_model_name_or_path,
                module_file,
Patrick von Platen's avatar
Patrick von Platen committed
383
384
385
386
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
387
                token=token,
Patrick von Platen's avatar
Patrick von Platen committed
388
            )
Patrick von Platen's avatar
Patrick von Platen committed
389
            submodule = os.path.join("local", "--".join(pretrained_model_name_or_path.split("/")))
Patrick von Platen's avatar
Patrick von Platen committed
390
391
392
        except EnvironmentError:
            logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}.")
            raise
patil-suraj's avatar
patil-suraj committed
393
394
395
396
397

    # Check we have all the requirements in our environment
    modules_needed = check_imports(resolved_module_file)

    # Now we move the module inside our cached dynamic modules.
398
    full_submodule = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule
patil-suraj's avatar
patil-suraj committed
399
400
    create_dynamic_module(full_submodule)
    submodule_path = Path(HF_MODULES_CACHE) / full_submodule
401
    if submodule == "local" or submodule == "git":
Patrick von Platen's avatar
Patrick von Platen committed
402
403
404
        # We always copy local files (we could hash the file to see if there was a change, and give them the name of
        # that hash, to only copy when there is a modification but it seems overkill for now).
        # The only reason we do the copy is to avoid putting too many folders in sys.path.
405
        shutil.copyfile(resolved_module_file, submodule_path / module_file)
Patrick von Platen's avatar
Patrick von Platen committed
406
        for module_needed in modules_needed:
407
408
409
410
411
            if len(module_needed.split(".")) == 2:
                module_needed = "/".join(module_needed.split("."))
                module_folder = module_needed.split("/")[0]
                if not os.path.exists(submodule_path / module_folder):
                    os.makedirs(submodule_path / module_folder)
Patrick von Platen's avatar
Patrick von Platen committed
412
            module_needed = f"{module_needed}.py"
413
            shutil.copyfile(os.path.join(pretrained_model_name_or_path, module_needed), submodule_path / module_needed)
Patrick von Platen's avatar
Patrick von Platen committed
414
415
416
417
418
419
420
421
422
423
424
425
    else:
        # Get the commit hash
        # TODO: we will get this info in the etag soon, so retrieve it from there and not here.
        commit_hash = model_info(pretrained_model_name_or_path, revision=revision, token=token).sha

        # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the
        # benefit of versioning.
        submodule_path = submodule_path / commit_hash
        full_submodule = full_submodule + os.path.sep + commit_hash
        create_dynamic_module(full_submodule)

        if not (submodule_path / module_file).exists():
426
427
428
429
            if len(module_file.split("/")) == 2:
                module_folder = module_file.split("/")[0]
                if not os.path.exists(submodule_path / module_folder):
                    os.makedirs(submodule_path / module_folder)
430
            shutil.copyfile(resolved_module_file, submodule_path / module_file)
431

Patrick von Platen's avatar
Patrick von Platen committed
432
433
        # Make sure we also have every file with relative
        for module_needed in modules_needed:
434
435
            if len(module_needed.split(".")) == 2:
                module_needed = "/".join(module_needed.split("."))
Patrick von Platen's avatar
Patrick von Platen committed
436
437
438
439
440
441
442
            if not (submodule_path / module_needed).exists():
                get_cached_module_file(
                    pretrained_model_name_or_path,
                    f"{module_needed}.py",
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
443
                    token=token,
Patrick von Platen's avatar
Patrick von Platen committed
444
445
446
                    revision=revision,
                    local_files_only=local_files_only,
                )
patil-suraj's avatar
patil-suraj committed
447
448
449
    return os.path.join(full_submodule, module_file)


450
@validate_hf_hub_args
patil-suraj's avatar
patil-suraj committed
451
452
453
def get_class_from_dynamic_module(
    pretrained_model_name_or_path: Union[str, os.PathLike],
    module_file: str,
Patrick von Platen's avatar
Patrick von Platen committed
454
    class_name: Optional[str] = None,
patil-suraj's avatar
patil-suraj committed
455
456
457
    cache_dir: Optional[Union[str, os.PathLike]] = None,
    force_download: bool = False,
    proxies: Optional[Dict[str, str]] = None,
458
    token: Optional[Union[bool, str]] = None,
patil-suraj's avatar
patil-suraj committed
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
    revision: Optional[str] = None,
    local_files_only: bool = False,
    **kwargs,
):
    """
    Extracts a class from a module file, present in the local folder or repository of a model.

    <Tip warning={true}>

    Calling this function will execute the code in the module file found locally or downloaded from the Hub. It should
    therefore only be called on trusted repos.

    </Tip>

    Args:
        pretrained_model_name_or_path (`str` or `os.PathLike`):
            This can be either:

            - a string, the *model id* of a pretrained model configuration hosted inside a model repo on
              huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced
              under a user or organization name, like `dbmdz/bert-base-german-cased`.
            - a path to a *directory* containing a configuration file saved using the
              [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.

        module_file (`str`):
            The name of the module file containing the class to look for.
        class_name (`str`):
            The name of the class to import in the module.
        cache_dir (`str` or `os.PathLike`, *optional*):
            Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
            cache should not be used.
        force_download (`bool`, *optional*, defaults to `False`):
            Whether or not to force to (re-)download the configuration files and override the cached versions if they
            exist.
        proxies (`Dict[str, str]`, *optional*):
            A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
            'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
496
        token (`str` or `bool`, *optional*):
patil-suraj's avatar
patil-suraj committed
497
498
499
500
501
502
503
504
505
506
507
            The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
            when running `transformers-cli login` (stored in `~/.huggingface`).
        revision (`str`, *optional*, defaults to `"main"`):
            The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
            git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
            identifier allowed by git.
        local_files_only (`bool`, *optional*, defaults to `False`):
            If `True`, will only try to load the tokenizer configuration from local files.

    <Tip>

508
509
    You may pass a token in `token` if you are not logged in (`hf auth login`) and want to use private or [gated
    models](https://huggingface.co/docs/hub/models-gated#gated-models).
patil-suraj's avatar
patil-suraj committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529

    </Tip>

    Returns:
        `type`: The class, dynamically imported from the module.

    Examples:

    ```python
    # Download module `modeling.py` from huggingface.co and cache then extract the class `MyBertModel` from this
    # module.
    cls = get_class_from_dynamic_module("sgugger/my-bert-model", "modeling.py", "MyBertModel")
    ```"""
    # And lastly we get the class inside our newly created module
    final_module = get_cached_module_file(
        pretrained_model_name_or_path,
        module_file,
        cache_dir=cache_dir,
        force_download=force_download,
        proxies=proxies,
530
        token=token,
patil-suraj's avatar
patil-suraj committed
531
532
533
        revision=revision,
        local_files_only=local_files_only,
    )
YiYi Xu's avatar
YiYi Xu committed
534
    return get_class_in_module(class_name, final_module)