README.md 4.27 KB
Newer Older
1
2
# Training SANA Sprint Diffuser

Quentin Gallouédec's avatar
Quentin Gallouédec committed
3
This README explains how to use the provided bash script commands to download a pre-trained teacher diffuser model and train it on a specific dataset, following the [SANA Sprint methodology](https://huggingface.co/papers/2503.09641).
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21


## Setup

### 1. Define the local paths

Set a variable for your desired output directory. This directory will store the downloaded model and the training checkpoints/results.

```bash
your_local_path='output' # Or any other path you prefer
mkdir -p $your_local_path # Create the directory if it doesn't exist
```

### 2. Download the pre-trained model

Download the SANA Sprint teacher model from Hugging Face Hub. The script uses the 1.6B parameter model.

```bash
22
hf download Efficient-Large-Model/SANA_Sprint_1.6B_1024px_teacher_diffusers --local-dir $your_local_path/SANA_Sprint_1.6B_1024px_teacher_diffusers
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
```

*(Optional: You can also download the 0.6B model by replacing the model name: `Efficient-Large-Model/Sana_Sprint_0.6B_1024px_teacher_diffusers`)*

### 3. Acquire the dataset shards

The training script in this example uses specific `.parquet` shards from a randomly selected `brivangl/midjourney-v6-llava` dataset instead of downloading the entire dataset automatically via `dataset_name`.

The script specifically uses these three files:
*   `data/train_000.parquet`
*   `data/train_001.parquet`
*   `data/train_002.parquet`



You can either:

Let the script download the dataset automatically during first run

Or download it manually

**Note:** The full `brivangl/midjourney-v6-llava` dataset is much larger and contains many more shards. This script example explicitly trains *only* on the three specified shards.

## Usage

Once the model is downloaded, you can run the training script.

```bash

your_local_path='output' # Ensure this variable is set

python train_sana_sprint_diffusers.py \
    --pretrained_model_name_or_path=$your_local_path/SANA_Sprint_1.6B_1024px_teacher_diffusers \
    --output_dir=$your_local_path \
    --mixed_precision=bf16 \
    --resolution=1024 \
    --learning_rate=1e-6 \
    --max_train_steps=30000 \
    --dataloader_num_workers=8 \
    --dataset_name='brivangl/midjourney-v6-llava' \
    --file_path data/train_000.parquet data/train_001.parquet data/train_002.parquet \
    --checkpointing_steps=500 --checkpoints_total_limit=10 \
    --train_batch_size=1 \
    --gradient_accumulation_steps=1 \
    --seed=453645634 \
    --train_largest_timestep \
    --misaligned_pairs_D \
    --gradient_checkpointing \
    --resume_from_checkpoint="latest" \
```

### Explanation of parameters

*   `--pretrained_model_name_or_path`: Path to the downloaded pre-trained model directory.
*   `--output_dir`: Directory where training logs, checkpoints, and the final model will be saved.
*   `--mixed_precision`: Use BF16 mixed precision for training, which can save memory and speed up training on compatible hardware.
*   `--resolution`: The image resolution used for training (1024x1024).
*   `--learning_rate`: The learning rate for the optimizer.
*   `--max_train_steps`: The total number of training steps to perform.
*   `--dataloader_num_workers`: Number of worker processes for loading data. Increase for faster data loading if your CPU and disk can handle it.
*   `--dataset_name`: The name of the dataset on Hugging Face Hub (`brivangl/midjourney-v6-llava`).
*   `--file_path`: **Specifies the local paths to the dataset shards to be used for training.** In this case, `data/train_000.parquet`, `data/train_001.parquet`, and `data/train_002.parquet`.
*   `--checkpointing_steps`: Save a training checkpoint every X steps.
*   `--checkpoints_total_limit`: Maximum number of checkpoints to keep. Older checkpoints will be deleted.
*   `--train_batch_size`: The batch size per GPU.
*   `--gradient_accumulation_steps`: Number of steps to accumulate gradients before performing an optimizer step.
*   `--seed`: Random seed for reproducibility.
*   `--train_largest_timestep`: A specific training strategy focusing on larger timesteps.
*   `--misaligned_pairs_D`: Another specific training strategy to add misaligned image-text pairs as fake data for GAN.
*   `--gradient_checkpointing`: Enable gradient checkpointing to save GPU memory.
*   `--resume_from_checkpoint`: Allows resuming training from the latest saved checkpoint in the `--output_dir`.