serverasync.py 6.79 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import asyncio
import gc
import logging
import os
import random
import threading
from contextlib import asynccontextmanager
from dataclasses import dataclass
from typing import Any, Dict, Optional, Type

import torch
from fastapi import FastAPI, HTTPException, Request
from fastapi.concurrency import run_in_threadpool
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import FileResponse
from Pipelines import ModelPipelineInitializer
from pydantic import BaseModel

from utils import RequestScopedPipeline, Utils


@dataclass
class ServerConfigModels:
    model: str = "stabilityai/stable-diffusion-3.5-medium"
    type_models: str = "t2im"
    constructor_pipeline: Optional[Type] = None
    custom_pipeline: Optional[Type] = None
    components: Optional[Dict[str, Any]] = None
    torch_dtype: Optional[torch.dtype] = None
    host: str = "0.0.0.0"
    port: int = 8500


server_config = ServerConfigModels()


@asynccontextmanager
async def lifespan(app: FastAPI):
    logging.basicConfig(level=logging.INFO)
    app.state.logger = logging.getLogger("diffusers-server")
    os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128,expandable_segments:True"
    os.environ["CUDA_LAUNCH_BLOCKING"] = "0"

    app.state.total_requests = 0
    app.state.active_inferences = 0
    app.state.metrics_lock = asyncio.Lock()
    app.state.metrics_task = None

    app.state.utils_app = Utils(
        host=server_config.host,
        port=server_config.port,
    )

    async def metrics_loop():
        try:
            while True:
                async with app.state.metrics_lock:
                    total = app.state.total_requests
                    active = app.state.active_inferences
                app.state.logger.info(f"[METRICS] total_requests={total} active_inferences={active}")
                await asyncio.sleep(5)
        except asyncio.CancelledError:
            app.state.logger.info("Metrics loop cancelled")
            raise

    app.state.metrics_task = asyncio.create_task(metrics_loop())

    try:
        yield
    finally:
        task = app.state.metrics_task
        if task:
            task.cancel()
            try:
                await task
            except asyncio.CancelledError:
                pass

        try:
            stop_fn = getattr(model_pipeline, "stop", None) or getattr(model_pipeline, "close", None)
            if callable(stop_fn):
                await run_in_threadpool(stop_fn)
        except Exception as e:
            app.state.logger.warning(f"Error during pipeline shutdown: {e}")

        app.state.logger.info("Lifespan shutdown complete")


app = FastAPI(lifespan=lifespan)

logger = logging.getLogger("DiffusersServer.Pipelines")


initializer = ModelPipelineInitializer(
    model=server_config.model,
    type_models=server_config.type_models,
)
model_pipeline = initializer.initialize_pipeline()
model_pipeline.start()

request_pipe = RequestScopedPipeline(model_pipeline.pipeline)
pipeline_lock = threading.Lock()

logger.info(f"Pipeline initialized and ready to receive requests (model ={server_config.model})")

app.state.MODEL_INITIALIZER = initializer
app.state.MODEL_PIPELINE = model_pipeline
app.state.REQUEST_PIPE = request_pipe
app.state.PIPELINE_LOCK = pipeline_lock


class JSONBodyQueryAPI(BaseModel):
    model: str | None = None
    prompt: str
    negative_prompt: str | None = None
    num_inference_steps: int = 28
    num_images_per_prompt: int = 1


@app.middleware("http")
async def count_requests_middleware(request: Request, call_next):
    async with app.state.metrics_lock:
        app.state.total_requests += 1
    response = await call_next(request)
    return response


@app.get("/")
async def root():
    return {"message": "Welcome to the Diffusers Server"}


@app.post("/api/diffusers/inference")
async def api(json: JSONBodyQueryAPI):
    prompt = json.prompt
    negative_prompt = json.negative_prompt or ""
    num_steps = json.num_inference_steps
    num_images_per_prompt = json.num_images_per_prompt

    wrapper = app.state.MODEL_PIPELINE
    initializer = app.state.MODEL_INITIALIZER

    utils_app = app.state.utils_app

    if not wrapper or not wrapper.pipeline:
        raise HTTPException(500, "Model not initialized correctly")
    if not prompt.strip():
        raise HTTPException(400, "No prompt provided")

    def make_generator():
        g = torch.Generator(device=initializer.device)
        return g.manual_seed(random.randint(0, 10_000_000))

    req_pipe = app.state.REQUEST_PIPE

    def infer():
        gen = make_generator()
        return req_pipe.generate(
            prompt=prompt,
            negative_prompt=negative_prompt,
            generator=gen,
            num_inference_steps=num_steps,
            num_images_per_prompt=num_images_per_prompt,
            device=initializer.device,
            output_type="pil",
        )

    try:
        async with app.state.metrics_lock:
            app.state.active_inferences += 1

        output = await run_in_threadpool(infer)

        async with app.state.metrics_lock:
            app.state.active_inferences = max(0, app.state.active_inferences - 1)

        urls = [utils_app.save_image(img) for img in output.images]
        return {"response": urls}

    except Exception as e:
        async with app.state.metrics_lock:
            app.state.active_inferences = max(0, app.state.active_inferences - 1)
        logger.error(f"Error during inference: {e}")
        raise HTTPException(500, f"Error in processing: {e}")

    finally:
        if torch.cuda.is_available():
            torch.cuda.synchronize()
            torch.cuda.empty_cache()
            torch.cuda.reset_peak_memory_stats()
            torch.cuda.ipc_collect()
        gc.collect()


@app.get("/images/{filename}")
async def serve_image(filename: str):
    utils_app = app.state.utils_app
    file_path = os.path.join(utils_app.image_dir, filename)
    if not os.path.isfile(file_path):
        raise HTTPException(status_code=404, detail="Image not found")
    return FileResponse(file_path, media_type="image/png")


@app.get("/api/status")
async def get_status():
    memory_info = {}
    if torch.cuda.is_available():
        memory_allocated = torch.cuda.memory_allocated() / 1024**3  # GB
        memory_reserved = torch.cuda.memory_reserved() / 1024**3  # GB
        memory_info = {
            "memory_allocated_gb": round(memory_allocated, 2),
            "memory_reserved_gb": round(memory_reserved, 2),
            "device": torch.cuda.get_device_name(0),
        }

    return {"current_model": server_config.model, "type_models": server_config.type_models, "memory": memory_info}


app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host=server_config.host, port=server_config.port)