test_models_unet_2d.py 10.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import math
18
import tracemalloc
19
20
21
22
import unittest

import torch

23
24
from diffusers import UNet2DModel
from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device
25

26
from ..test_modeling_common import ModelTesterMixin
27
28


Patrick von Platen's avatar
Patrick von Platen committed
29
logger = logging.get_logger(__name__)
30
31
32
torch.backends.cuda.matmul.allow_tf32 = False


33
class Unet2DModelTests(ModelTesterMixin, unittest.TestCase):
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    model_class = UNet2DModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

        return {"sample": noise, "timestep": time_step}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "block_out_channels": (32, 64),
            "down_block_types": ("DownBlock2D", "AttnDownBlock2D"),
            "up_block_types": ("AttnUpBlock2D", "UpBlock2D"),
            "attention_head_dim": None,
            "out_channels": 3,
            "in_channels": 3,
            "layers_per_block": 2,
            "sample_size": 32,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict


class UNetLDMModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNet2DModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 4
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

        return {"sample": noise, "timestep": time_step}

    @property
    def input_shape(self):
        return (4, 32, 32)

    @property
    def output_shape(self):
        return (4, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "sample_size": 32,
            "in_channels": 4,
            "out_channels": 4,
            "layers_per_block": 2,
            "block_out_channels": (32, 64),
            "attention_head_dim": 32,
            "down_block_types": ("DownBlock2D", "DownBlock2D"),
            "up_block_types": ("UpBlock2D", "UpBlock2D"),
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_from_pretrained_hub(self):
        model, loading_info = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)

        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
113
        image = model(**self.dummy_input).sample
114
115
116

        assert image is not None, "Make sure output is not None"

Anton Lozhkov's avatar
Anton Lozhkov committed
117
    @unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU")
118
    def test_from_pretrained_accelerate(self):
119
        model, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
120
121
122
123
124
        model.to(torch_device)
        image = model(**self.dummy_input).sample

        assert image is not None, "Make sure output is not None"

Anton Lozhkov's avatar
Anton Lozhkov committed
125
    @unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU")
126
    def test_from_pretrained_accelerate_wont_change_results(self):
127
        # by defautl model loading will use accelerate as `low_cpu_mem_usage=True`
128
        model_accelerate, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
        model_accelerate.to(torch_device)
        model_accelerate.eval()

        noise = torch.randn(
            1,
            model_accelerate.config.in_channels,
            model_accelerate.config.sample_size,
            model_accelerate.config.sample_size,
            generator=torch.manual_seed(0),
        )
        noise = noise.to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0]).to(torch_device)

        arr_accelerate = model_accelerate(noise, time_step)["sample"]

        # two models don't need to stay in the device at the same time
        del model_accelerate
        torch.cuda.empty_cache()
        gc.collect()

149
        model_normal_load, _ = UNet2DModel.from_pretrained(
150
            "fusing/unet-ldm-dummy-update", output_loading_info=True, low_cpu_mem_usage=False
151
        )
152
153
154
155
        model_normal_load.to(torch_device)
        model_normal_load.eval()
        arr_normal_load = model_normal_load(noise, time_step)["sample"]

156
        assert torch_all_close(arr_accelerate, arr_normal_load, rtol=1e-3)
157

Anton Lozhkov's avatar
Anton Lozhkov committed
158
    @unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU")
159
160
161
162
163
    def test_memory_footprint_gets_reduced(self):
        torch.cuda.empty_cache()
        gc.collect()

        tracemalloc.start()
164
        # by defautl model loading will use accelerate as `low_cpu_mem_usage=True`
165
        model_accelerate, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
166
167
168
169
170
171
172
173
        model_accelerate.to(torch_device)
        model_accelerate.eval()
        _, peak_accelerate = tracemalloc.get_traced_memory()

        del model_accelerate
        torch.cuda.empty_cache()
        gc.collect()

174
        model_normal_load, _ = UNet2DModel.from_pretrained(
175
            "fusing/unet-ldm-dummy-update", output_loading_info=True, low_cpu_mem_usage=False
176
        )
177
178
179
180
181
182
183
184
        model_normal_load.to(torch_device)
        model_normal_load.eval()
        _, peak_normal = tracemalloc.get_traced_memory()

        tracemalloc.stop()

        assert peak_accelerate < peak_normal

185
186
187
    def test_output_pretrained(self):
        model = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update")
        model.eval()
188
        model.to(torch_device)
189

190
191
192
193
194
195
196
        noise = torch.randn(
            1,
            model.config.in_channels,
            model.config.sample_size,
            model.config.sample_size,
            generator=torch.manual_seed(0),
        )
197
198
        noise = noise.to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0]).to(torch_device)
199
200

        with torch.no_grad():
201
            output = model(noise, time_step).sample
202

203
        output_slice = output[0, -1, -3:, -3:].flatten().cpu()
204
205
206
207
        # fmt: off
        expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800])
        # fmt: on

208
        self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-3))
209
210
211
212
213
214
215
216
217
218
219


class NCSNppModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNet2DModel

    @property
    def dummy_input(self, sizes=(32, 32)):
        batch_size = 4
        num_channels = 3

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
220
        time_step = torch.tensor(batch_size * [10]).to(dtype=torch.int32, device=torch_device)
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

        return {"sample": noise, "timestep": time_step}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "block_out_channels": [32, 64, 64, 64],
            "in_channels": 3,
            "layers_per_block": 1,
            "out_channels": 3,
            "time_embedding_type": "fourier",
            "norm_eps": 1e-6,
            "mid_block_scale_factor": math.sqrt(2.0),
            "norm_num_groups": None,
            "down_block_types": [
                "SkipDownBlock2D",
                "AttnSkipDownBlock2D",
                "SkipDownBlock2D",
                "SkipDownBlock2D",
            ],
            "up_block_types": [
                "SkipUpBlock2D",
                "SkipUpBlock2D",
                "AttnSkipUpBlock2D",
                "SkipUpBlock2D",
            ],
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

258
    @slow
259
    def test_from_pretrained_hub(self):
260
        model, loading_info = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256", output_loading_info=True)
261
262
263
264
265
266
267
268
269
270
271
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        inputs = self.dummy_input
        noise = floats_tensor((4, 3) + (256, 256)).to(torch_device)
        inputs["sample"] = noise
        image = model(**inputs)

        assert image is not None, "Make sure output is not None"

272
    @slow
273
    def test_output_pretrained_ve_mid(self):
274
        model = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256")
275
276
277
278
279
280
281
282
283
284
285
286
287
288
        model.to(torch_device)

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        batch_size = 4
        num_channels = 3
        sizes = (256, 256)

        noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)

        with torch.no_grad():
289
            output = model(noise, time_step).sample
290
291
292
293
294
295

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
        expected_output_slice = torch.tensor([-4836.2231, -6487.1387, -3816.7969, -7964.9253, -10966.2842, -20043.6016, 8137.0571, 2340.3499, 544.6114])
        # fmt: on

296
        self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313

    def test_output_pretrained_ve_large(self):
        model = UNet2DModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update")
        model.to(torch_device)

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)

        with torch.no_grad():
314
            output = model(noise, time_step).sample
315
316
317
318
319
320

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
        expected_output_slice = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256])
        # fmt: on

321
        self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
322
323
324
325

    def test_forward_with_norm_groups(self):
        # not required for this model
        pass