train_dreambooth.py 34.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#!/usr/bin/env python
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

16
import argparse
17
import hashlib
18
import itertools
Suraj Patil's avatar
Suraj Patil committed
19
import logging
20
21
import math
import os
22
import warnings
23
24
25
26
27
28
29
30
from pathlib import Path
from typing import Optional

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import Dataset

Suraj Patil's avatar
Suraj Patil committed
31
32
33
import datasets
import diffusers
import transformers
34
35
36
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
37
from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel
38
from diffusers.optimization import get_scheduler
39
from diffusers.utils import check_min_version
40
from diffusers.utils.import_utils import is_xformers_available
41
42
43
44
from huggingface_hub import HfFolder, Repository, whoami
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm
45
from transformers import AutoTokenizer, PretrainedConfig
46
47


48
49
50
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")

51
52
53
logger = get_logger(__name__)


54
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
55
56
57
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="text_encoder",
58
        revision=revision,
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
    )
    model_class = text_encoder_config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "RobertaSeriesModelWithTransformation":
        from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation

        return RobertaSeriesModelWithTransformation
    else:
        raise ValueError(f"{model_class} is not supported.")


Suraj Patil's avatar
Suraj Patil committed
74
def parse_args(input_args=None):
75
76
77
78
79
80
81
82
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
83
84
85
86
87
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
88
89
90
91
        help=(
            "Revision of pretrained model identifier from huggingface.co/models. Trainable model components should be"
            " float32 precision."
        ),
92
    )
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--instance_data_dir",
        type=str,
        default=None,
        required=True,
        help="A folder containing the training data of instance images.",
    )
    parser.add_argument(
        "--class_data_dir",
        type=str,
        default=None,
        required=False,
        help="A folder containing the training data of class images.",
    )
    parser.add_argument(
        "--instance_prompt",
        type=str,
        default=None,
117
        required=True,
Yuta Hayashibe's avatar
Yuta Hayashibe committed
118
        help="The prompt with identifier specifying the instance",
119
120
121
122
123
    )
    parser.add_argument(
        "--class_prompt",
        type=str,
        default=None,
Yuta Hayashibe's avatar
Yuta Hayashibe committed
124
        help="The prompt to specify images in the same class as provided instance images.",
125
126
127
128
129
    )
    parser.add_argument(
        "--with_prior_preservation",
        default=False,
        action="store_true",
Yuta Hayashibe's avatar
Yuta Hayashibe committed
130
        help="Flag to add prior preservation loss.",
131
132
133
134
135
136
137
    )
    parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
    parser.add_argument(
        "--num_class_images",
        type=int,
        default=100,
        help=(
138
139
            "Minimal class images for prior preservation loss. If there are not enough images already present in"
            " class_data_dir, additional images will be sampled with class_prompt."
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="text-inversion-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution"
    )
161
162
163
164
165
    parser.add_argument(
        "--train_text_encoder",
        action="store_true",
        help="Whether to train the text encoder. If set, the text encoder should be float32 precision.",
    )
166
167
168
169
170
171
172
173
174
175
176
177
178
    parser.add_argument(
        "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
        "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
179
180
181
182
183
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
184
185
            "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
            " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
186
187
188
189
190
191
192
193
194
195
196
197
            " training using `--resume_from_checkpoint`."
        ),
    )
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=5e-6,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
233
234
235
236
237
238
239
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
    parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    parser.add_argument(
        "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
Suraj Patil's avatar
Suraj Patil committed
265
266
267
268
269
270
271
272
273
274
275
276
277
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
278
279
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
Suraj Patil's avatar
Suraj Patil committed
280
281
        ),
    )
282
283
284
    parser.add_argument(
        "--mixed_precision",
        type=str,
285
        default=None,
286
287
        choices=["no", "fp16", "bf16"],
        help=(
288
289
290
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
291
292
        ),
    )
293
294
295
296
297
298
299
300
301
302
    parser.add_argument(
        "--prior_generation_precision",
        type=str,
        default=None,
        choices=["no", "fp32", "fp16", "bf16"],
        help=(
            "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to  fp16 if a GPU is available else fp32."
        ),
    )
303
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
304
305
306
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
307

308
309
310
311
312
    if input_args is not None:
        args = parser.parse_args(input_args)
    else:
        args = parser.parse_args()

313
314
315
316
317
318
319
320
321
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.with_prior_preservation:
        if args.class_data_dir is None:
            raise ValueError("You must specify a data directory for class images.")
        if args.class_prompt is None:
            raise ValueError("You must specify prompt for class images.")
322
    else:
323
        # logger is not available yet
324
        if args.class_data_dir is not None:
325
            warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
326
        if args.class_prompt is not None:
327
            warnings.warn("You need not use --class_prompt without --with_prior_preservation.")
328
329
330
331
332
333

    return args


class DreamBoothDataset(Dataset):
    """
Yuta Hayashibe's avatar
Yuta Hayashibe committed
334
    A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
    It pre-processes the images and the tokenizes prompts.
    """

    def __init__(
        self,
        instance_data_root,
        instance_prompt,
        tokenizer,
        class_data_root=None,
        class_prompt=None,
        size=512,
        center_crop=False,
    ):
        self.size = size
        self.center_crop = center_crop
        self.tokenizer = tokenizer

        self.instance_data_root = Path(instance_data_root)
        if not self.instance_data_root.exists():
354
            raise ValueError(f"Instance {self.instance_data_root} images root doesn't exists.")
355
356
357
358
359
360
361
362
363

        self.instance_images_path = list(Path(instance_data_root).iterdir())
        self.num_instance_images = len(self.instance_images_path)
        self.instance_prompt = instance_prompt
        self._length = self.num_instance_images

        if class_data_root is not None:
            self.class_data_root = Path(class_data_root)
            self.class_data_root.mkdir(parents=True, exist_ok=True)
364
            self.class_images_path = list(self.class_data_root.iterdir())
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
            self.num_class_images = len(self.class_images_path)
            self._length = max(self.num_class_images, self.num_instance_images)
            self.class_prompt = class_prompt
        else:
            self.class_data_root = None

        self.image_transforms = transforms.Compose(
            [
                transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
                transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
        )

    def __len__(self):
        return self._length

    def __getitem__(self, index):
        example = {}
        instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
        if not instance_image.mode == "RGB":
            instance_image = instance_image.convert("RGB")
        example["instance_images"] = self.image_transforms(instance_image)
        example["instance_prompt_ids"] = self.tokenizer(
            self.instance_prompt,
            truncation=True,
392
            padding="max_length",
393
            max_length=self.tokenizer.model_max_length,
394
            return_tensors="pt",
395
396
397
398
399
400
401
402
403
404
        ).input_ids

        if self.class_data_root:
            class_image = Image.open(self.class_images_path[index % self.num_class_images])
            if not class_image.mode == "RGB":
                class_image = class_image.convert("RGB")
            example["class_images"] = self.image_transforms(class_image)
            example["class_prompt_ids"] = self.tokenizer(
                self.class_prompt,
                truncation=True,
405
                padding="max_length",
406
                max_length=self.tokenizer.model_max_length,
407
                return_tensors="pt",
408
409
410
411
412
            ).input_ids

        return example


413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
def collate_fn(examples, with_prior_preservation=False):
    input_ids = [example["instance_prompt_ids"] for example in examples]
    pixel_values = [example["instance_images"] for example in examples]

    # Concat class and instance examples for prior preservation.
    # We do this to avoid doing two forward passes.
    if with_prior_preservation:
        input_ids += [example["class_prompt_ids"] for example in examples]
        pixel_values += [example["class_images"] for example in examples]

    pixel_values = torch.stack(pixel_values)
    pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()

    input_ids = torch.cat(input_ids, dim=0)

    batch = {
        "input_ids": input_ids,
        "pixel_values": pixel_values,
    }
    return batch


435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
class PromptDataset(Dataset):
    "A simple dataset to prepare the prompts to generate class images on multiple GPUs."

    def __init__(self, prompt, num_samples):
        self.prompt = prompt
        self.num_samples = num_samples

    def __len__(self):
        return self.num_samples

    def __getitem__(self, index):
        example = {}
        example["prompt"] = self.prompt
        example["index"] = index
        return example


def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
    if token is None:
        token = HfFolder.get_token()
    if organization is None:
        username = whoami(token)["name"]
        return f"{username}/{model_id}"
    else:
        return f"{organization}/{model_id}"


462
def main(args):
463
464
465
466
467
    logging_dir = Path(args.output_dir, args.logging_dir)

    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
Suraj Patil's avatar
Suraj Patil committed
468
        log_with=args.report_to,
469
470
471
        logging_dir=logging_dir,
    )

472
473
474
475
476
477
478
479
480
    # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
    # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
    # TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
    if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
        raise ValueError(
            "Gradient accumulation is not supported when training the text encoder in distributed training. "
            "Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
        )

Suraj Patil's avatar
Suraj Patil committed
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
498
499
500
    if args.seed is not None:
        set_seed(args.seed)

Suraj Patil's avatar
Suraj Patil committed
501
    # Generate class images if prior preservation is enabled.
502
503
504
505
506
507
508
509
    if args.with_prior_preservation:
        class_images_dir = Path(args.class_data_dir)
        if not class_images_dir.exists():
            class_images_dir.mkdir(parents=True)
        cur_class_images = len(list(class_images_dir.iterdir()))

        if cur_class_images < args.num_class_images:
            torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
510
511
512
513
514
515
            if args.prior_generation_precision == "fp32":
                torch_dtype = torch.float32
            elif args.prior_generation_precision == "fp16":
                torch_dtype = torch.float16
            elif args.prior_generation_precision == "bf16":
                torch_dtype = torch.bfloat16
516
            pipeline = DiffusionPipeline.from_pretrained(
517
518
519
520
                args.pretrained_model_name_or_path,
                torch_dtype=torch_dtype,
                safety_checker=None,
                revision=args.revision,
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
            )
            pipeline.set_progress_bar_config(disable=True)

            num_new_images = args.num_class_images - cur_class_images
            logger.info(f"Number of class images to sample: {num_new_images}.")

            sample_dataset = PromptDataset(args.class_prompt, num_new_images)
            sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)

            sample_dataloader = accelerator.prepare(sample_dataloader)
            pipeline.to(accelerator.device)

            for example in tqdm(
                sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
            ):
536
                images = pipeline(example["prompt"]).images
537
538

                for i, image in enumerate(images):
539
540
541
                    hash_image = hashlib.sha1(image.tobytes()).hexdigest()
                    image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
                    image.save(image_filename)
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565

            del pipeline
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)

            with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

    # Load the tokenizer
    if args.tokenizer_name:
Suraj Patil's avatar
Suraj Patil committed
566
        tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
567
    elif args.pretrained_model_name_or_path:
568
        tokenizer = AutoTokenizer.from_pretrained(
569
570
571
            args.pretrained_model_name_or_path,
            subfolder="tokenizer",
            revision=args.revision,
572
            use_fast=False,
573
        )
574

575
    # import correct text encoder class
576
    text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)
577

Suraj Patil's avatar
Suraj Patil committed
578
579
    # Load scheduler and models
    noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
580
    text_encoder = text_encoder_cls.from_pretrained(
Suraj Patil's avatar
Suraj Patil committed
581
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
582
    )
Suraj Patil's avatar
Suraj Patil committed
583
    vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)
584
    unet = UNet2DConditionModel.from_pretrained(
Suraj Patil's avatar
Suraj Patil committed
585
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
586
    )
587

Suraj Patil's avatar
Suraj Patil committed
588
589
590
591
    vae.requires_grad_(False)
    if not args.train_text_encoder:
        text_encoder.requires_grad_(False)

592
593
    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
594
            unet.enable_xformers_memory_efficient_attention()
595
596
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")
597

598
599
    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()
600
601
        if args.train_text_encoder:
            text_encoder.gradient_checkpointing_enable()
602

Suraj Patil's avatar
Suraj Patil committed
603
604
605
606
607
    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
    if args.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
            )

        optimizer_class = bnb.optim.AdamW8bit
    else:
        optimizer_class = torch.optim.AdamW

Suraj Patil's avatar
Suraj Patil committed
626
    # Optimizer creation
627
628
629
    params_to_optimize = (
        itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters()
    )
630
    optimizer = optimizer_class(
631
        params_to_optimize,
632
633
634
635
636
637
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

Suraj Patil's avatar
Suraj Patil committed
638
    # Dataset and DataLoaders creation:
639
640
641
642
643
644
645
646
647
648
649
    train_dataset = DreamBoothDataset(
        instance_data_root=args.instance_data_dir,
        instance_prompt=args.instance_prompt,
        class_data_root=args.class_data_dir if args.with_prior_preservation else None,
        class_prompt=args.class_prompt,
        tokenizer=tokenizer,
        size=args.resolution,
        center_crop=args.center_crop,
    )

    train_dataloader = torch.utils.data.DataLoader(
650
651
652
653
654
        train_dataset,
        batch_size=args.train_batch_size,
        shuffle=True,
        collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
        num_workers=1,
655
656
657
658
659
660
661
662
663
664
665
666
667
668
    )

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
        num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
669
670
        num_cycles=args.lr_num_cycles,
        power=args.lr_power,
671
672
    )

Suraj Patil's avatar
Suraj Patil committed
673
    # Prepare everything with our `accelerator`.
674
675
676
677
678
679
680
681
    if args.train_text_encoder:
        unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, text_encoder, optimizer, train_dataloader, lr_scheduler
        )
    else:
        unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, optimizer, train_dataloader, lr_scheduler
        )
682

Suraj Patil's avatar
Suraj Patil committed
683
684
    # For mixed precision training we cast the text_encoder and vae weights to half-precision
    # as these models are only used for inference, keeping weights in full precision is not required.
685
    weight_dtype = torch.float32
686
    if accelerator.mixed_precision == "fp16":
687
        weight_dtype = torch.float16
688
    elif accelerator.mixed_precision == "bf16":
689
690
        weight_dtype = torch.bfloat16

Suraj Patil's avatar
Suraj Patil committed
691
    # Move vae and text_encoder to device and cast to weight_dtype
692
    vae.to(accelerator.device, dtype=weight_dtype)
693
694
    if not args.train_text_encoder:
        text_encoder.to(accelerator.device, dtype=weight_dtype)
695

696
697
698
699
700
701
702
703
704
705
706
    low_precision_error_string = (
        "Please make sure to always have all model weights in full float32 precision when starting training - even if"
        " doing mixed precision training. copy of the weights should still be float32."
    )

    if unet.dtype != torch.float32:
        raise ValueError(f"Unet loaded as datatype {unet.dtype}. {low_precision_error_string}")

    if args.train_text_encoder and text_encoder.dtype != torch.float32:
        raise ValueError(f"Text encoder loaded as datatype {text_encoder.dtype}. {low_precision_error_string}")

707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        accelerator.init_trackers("dreambooth", config=vars(args))

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num batches each epoch = {len(train_dataloader)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
730
731
732
    global_step = 0
    first_epoch = 0

Suraj Patil's avatar
Suraj Patil committed
733
    # Potentially load in the weights and states from a previous save
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the mos recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
            path = dirs[-1]
        accelerator.print(f"Resuming from checkpoint {path}")
        accelerator.load_state(os.path.join(args.output_dir, path))
        global_step = int(path.split("-")[1])

        resume_global_step = global_step * args.gradient_accumulation_steps
        first_epoch = resume_global_step // num_update_steps_per_epoch
        resume_step = resume_global_step % num_update_steps_per_epoch

751
    # Only show the progress bar once on each machine.
752
    progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
753
754
    progress_bar.set_description("Steps")

755
    for epoch in range(first_epoch, args.num_train_epochs):
756
        unet.train()
757
758
        if args.train_text_encoder:
            text_encoder.train()
759
        for step, batch in enumerate(train_dataloader):
760
761
762
763
764
765
            # Skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
                if step % args.gradient_accumulation_steps == 0:
                    progress_bar.update(1)
                continue

766
767
            with accelerator.accumulate(unet):
                # Convert images to latent space
768
769
                latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
                latents = latents * 0.18215
770
771

                # Sample noise that we'll add to the latents
772
                noise = torch.randn_like(latents)
773
774
775
776
777
778
779
780
781
782
                bsz = latents.shape[0]
                # Sample a random timestep for each image
                timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
                timesteps = timesteps.long()

                # Add noise to the latents according to the noise magnitude at each timestep
                # (this is the forward diffusion process)
                noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)

                # Get the text embedding for conditioning
783
                encoder_hidden_states = text_encoder(batch["input_ids"])[0]
784
785

                # Predict the noise residual
786
787
788
789
790
791
792
793
794
                model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample

                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
                    target = noise_scheduler.get_velocity(latents, noise, timesteps)
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
795
796

                if args.with_prior_preservation:
797
798
799
                    # Chunk the noise and model_pred into two parts and compute the loss on each part separately.
                    model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
                    target, target_prior = torch.chunk(target, 2, dim=0)
800
801

                    # Compute instance loss
802
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
803
804

                    # Compute prior loss
805
                    prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
806
807
808
809

                    # Add the prior loss to the instance loss.
                    loss = loss + args.prior_loss_weight * prior_loss
                else:
810
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
811
812

                accelerator.backward(loss)
813
                if accelerator.sync_gradients:
814
815
816
817
818
819
                    params_to_clip = (
                        itertools.chain(unet.parameters(), text_encoder.parameters())
                        if args.train_text_encoder
                        else unet.parameters()
                    )
                    accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
820
821
822
823
824
825
826
827
828
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

829
                if global_step % args.checkpointing_steps == 0:
830
831
                    if accelerator.is_main_process:
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
832
833
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")
834

835
836
837
838
839
840
841
842
            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break

    # Create the pipeline using using the trained modules and save it.
Suraj Patil's avatar
Suraj Patil committed
843
    accelerator.wait_for_everyone()
844
    if accelerator.is_main_process:
845
        pipeline = DiffusionPipeline.from_pretrained(
846
847
848
            args.pretrained_model_name_or_path,
            unet=accelerator.unwrap_model(unet),
            text_encoder=accelerator.unwrap_model(text_encoder),
849
            revision=args.revision,
850
851
852
853
        )
        pipeline.save_pretrained(args.output_dir)

        if args.push_to_hub:
854
            repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True)
855
856
857
858
859

    accelerator.end_training()


if __name__ == "__main__":
860
861
    args = parse_args()
    main(args)