test_if_img2img.py 5.43 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
Patrick von Platen's avatar
Patrick von Platen committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
Patrick von Platen's avatar
Patrick von Platen committed
17
18
19
20
21
22
import random
import unittest

import torch

from diffusers import IFImg2ImgPipeline
23
from diffusers.models.attention_processor import AttnAddedKVProcessor
24
from diffusers.utils.import_utils import is_xformers_available
25
from diffusers.utils.testing_utils import (
26
27
28
    backend_empty_cache,
    backend_reset_max_memory_allocated,
    backend_reset_peak_memory_stats,
29
30
31
    floats_tensor,
    load_numpy,
    require_accelerator,
Marc Sun's avatar
Marc Sun committed
32
    require_hf_hub_version_greater,
33
    require_torch_accelerator,
Marc Sun's avatar
Marc Sun committed
34
    require_transformers_version_greater,
35
36
37
38
    skip_mps,
    slow,
    torch_device,
)
Patrick von Platen's avatar
Patrick von Platen committed
39
40
41
42
43

from ..pipeline_params import (
    TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
    TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
44
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
Patrick von Platen's avatar
Patrick von Platen committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from . import IFPipelineTesterMixin


@skip_mps
class IFImg2ImgPipelineFastTests(PipelineTesterMixin, IFPipelineTesterMixin, unittest.TestCase):
    pipeline_class = IFImg2ImgPipeline
    params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"}
    batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
    required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}

    def get_dummy_components(self):
        return self._get_dummy_components()

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "image": image,
            "generator": generator,
            "num_inference_steps": 2,
71
            "output_type": "np",
Patrick von Platen's avatar
Patrick von Platen committed
72
73
74
75
76
77
78
        }

        return inputs

    def test_save_load_optional_components(self):
        self._test_save_load_optional_components()

79
80
81
82
83
84
85
    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3)

86
87
    @unittest.skipIf(torch_device not in ["cuda", "xpu"], reason="float16 requires CUDA or XPU")
    @require_accelerator
Patrick von Platen's avatar
Patrick von Platen committed
88
89
    def test_save_load_float16(self):
        # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
90
        super().test_save_load_float16(expected_max_diff=1e-1)
Patrick von Platen's avatar
Patrick von Platen committed
91

92
93
    @unittest.skipIf(torch_device not in ["cuda", "xpu"], reason="float16 requires CUDA or XPU")
    @require_accelerator
Patrick von Platen's avatar
Patrick von Platen committed
94
    def test_float16_inference(self):
95
        super().test_float16_inference(expected_max_diff=1e-1)
Patrick von Platen's avatar
Patrick von Platen committed
96
97
98
99
100
101
102
103
104
105
106

    def test_attention_slicing_forward_pass(self):
        self._test_attention_slicing_forward_pass(expected_max_diff=1e-2)

    def test_save_load_local(self):
        self._test_save_load_local()

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(
            expected_max_diff=1e-2,
        )
107

Marc Sun's avatar
Marc Sun committed
108
109
110
111
112
    @require_hf_hub_version_greater("0.26.5")
    @require_transformers_version_greater("4.47.1")
    def test_save_load_dduf(self):
        super().test_save_load_dduf(atol=1e-2, rtol=1e-2)

113
114

@slow
115
@require_torch_accelerator
116
class IFImg2ImgPipelineSlowTests(unittest.TestCase):
117
118
119
120
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
121
        backend_empty_cache(torch_device)
122

123
124
125
126
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
127
        backend_empty_cache(torch_device)
128
129
130
131
132
133
134
135

    def test_if_img2img(self):
        pipe = IFImg2ImgPipeline.from_pretrained(
            "DeepFloyd/IF-I-L-v1.0",
            variant="fp16",
            torch_dtype=torch.float16,
        )
        pipe.unet.set_attn_processor(AttnAddedKVProcessor())
136
        pipe.enable_model_cpu_offload(device=torch_device)
137

138
139
140
        backend_reset_max_memory_allocated(torch_device)
        backend_empty_cache(torch_device)
        backend_reset_peak_memory_stats(torch_device)
141

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
        image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device)
        generator = torch.Generator(device="cpu").manual_seed(0)
        output = pipe(
            prompt="anime turtle",
            image=image,
            num_inference_steps=2,
            generator=generator,
            output_type="np",
        )
        image = output.images[0]

        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes < 12 * 10**9

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy"
        )
        assert_mean_pixel_difference(image, expected_image)

        pipe.remove_all_hooks()