test_ddpm.py 3.95 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np
import torch

from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
22
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_accelerator, slow, torch_device
23
24


25
enable_full_determinism()
26
27


28
class DDPMPipelineFastTests(unittest.TestCase):
29
30
31
32
    @property
    def dummy_uncond_unet(self):
        torch.manual_seed(0)
        model = UNet2DModel(
33
34
35
36
            block_out_channels=(4, 8),
            layers_per_block=1,
            norm_num_groups=4,
            sample_size=8,
37
38
39
40
41
42
43
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

44
    def test_fast_inference(self):
45
        device = "cpu"
46
47
48
49
        unet = self.dummy_uncond_unet
        scheduler = DDPMScheduler()

        ddpm = DDPMPipeline(unet=unet, scheduler=scheduler)
50
        ddpm.to(device)
51
52
        ddpm.set_progress_bar_config(disable=None)

53
        generator = torch.Generator(device=device).manual_seed(0)
54
        image = ddpm(generator=generator, num_inference_steps=2, output_type="np").images
55

56
        generator = torch.Generator(device=device).manual_seed(0)
57
        image_from_tuple = ddpm(generator=generator, num_inference_steps=2, output_type="np", return_dict=False)[0]
58
59
60
61

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

62
63
        assert image.shape == (1, 8, 8, 3)
        expected_slice = np.array([0.0, 0.9996672, 0.00329116, 1.0, 0.9995991, 1.0, 0.0060907, 0.00115037, 0.0])
64
65
66
67

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2

68
69
70
71
72
73
74
75
    def test_inference_predict_sample(self):
        unet = self.dummy_uncond_unet
        scheduler = DDPMScheduler(prediction_type="sample")

        ddpm = DDPMPipeline(unet=unet, scheduler=scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)

76
        generator = torch.manual_seed(0)
77
        image = ddpm(generator=generator, num_inference_steps=2, output_type="np").images
78

79
        generator = torch.manual_seed(0)
80
        image_eps = ddpm(generator=generator, num_inference_steps=2, output_type="np")[0]
81
82
83
84

        image_slice = image[0, -3:, -3:, -1]
        image_eps_slice = image_eps[0, -3:, -3:, -1]

85
        assert image.shape == (1, 8, 8, 3)
86
87
        tolerance = 1e-2 if torch_device != "mps" else 3e-2
        assert np.abs(image_slice.flatten() - image_eps_slice.flatten()).max() < tolerance
88
89
90


@slow
91
@require_torch_accelerator
92
93
94
95
class DDPMPipelineIntegrationTests(unittest.TestCase):
    def test_inference_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

96
        unet = UNet2DModel.from_pretrained(model_id)
97
        scheduler = DDPMScheduler.from_pretrained(model_id)
98
99
100
101
102

        ddpm = DDPMPipeline(unet=unet, scheduler=scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)

103
        generator = torch.manual_seed(0)
104
        image = ddpm(generator=generator, output_type="np").images
105
106
107
108

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
Patrick von Platen's avatar
Patrick von Platen committed
109
        expected_slice = np.array([0.4200, 0.3588, 0.1939, 0.3847, 0.3382, 0.2647, 0.4155, 0.3582, 0.3385])
110
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2