test_pipeline_level_quantization.py 12.7 KB
Newer Older
1
# coding=utf-8
Aryan's avatar
Aryan committed
2
# Copyright 2025 The HuggingFace Team Inc.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
import json
16
17
18
19
import tempfile
import unittest

import torch
20
from parameterized import parameterized
21

22
from diffusers import BitsAndBytesConfig, DiffusionPipeline, QuantoConfig
23
from diffusers.quantizers import PipelineQuantizationConfig
24
from diffusers.utils import logging
25
26

from ..testing_utils import (
27
    CaptureLogger,
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    is_transformers_available,
    require_accelerate,
    require_bitsandbytes_version_greater,
    require_quanto,
    require_torch,
    require_torch_accelerator,
    slow,
    torch_device,
)


if is_transformers_available():
    from transformers import BitsAndBytesConfig as TranBitsAndBytesConfig
else:
    TranBitsAndBytesConfig = None


@require_bitsandbytes_version_greater("0.43.2")
@require_quanto
@require_accelerate
@require_torch
@require_torch_accelerator
@slow
class PipelineQuantizationTests(unittest.TestCase):
    model_name = "hf-internal-testing/tiny-flux-pipe"
    prompt = "a beautiful sunset amidst the mountains."
    num_inference_steps = 10
    seed = 0

    def test_quant_config_set_correctly_through_kwargs(self):
        components_to_quantize = ["transformer", "text_encoder_2"]
        quant_config = PipelineQuantizationConfig(
            quant_backend="bitsandbytes_4bit",
            quant_kwargs={
                "load_in_4bit": True,
                "bnb_4bit_quant_type": "nf4",
                "bnb_4bit_compute_dtype": torch.bfloat16,
            },
            components_to_quantize=components_to_quantize,
        )
        pipe = DiffusionPipeline.from_pretrained(
            self.model_name,
            quantization_config=quant_config,
            torch_dtype=torch.bfloat16,
        ).to(torch_device)
        for name, component in pipe.components.items():
            if name in components_to_quantize:
                self.assertTrue(getattr(component.config, "quantization_config", None) is not None)
                quantization_config = component.config.quantization_config
                self.assertTrue(quantization_config.load_in_4bit)
                self.assertTrue(quantization_config.quant_method == "bitsandbytes")

        _ = pipe(self.prompt, num_inference_steps=self.num_inference_steps)

    def test_quant_config_set_correctly_through_granular(self):
        quant_config = PipelineQuantizationConfig(
            quant_mapping={
                "transformer": QuantoConfig(weights_dtype="int8"),
                "text_encoder_2": TranBitsAndBytesConfig(load_in_4bit=True, compute_dtype=torch.bfloat16),
            }
        )
        components_to_quantize = list(quant_config.quant_mapping.keys())
        pipe = DiffusionPipeline.from_pretrained(
            self.model_name,
            quantization_config=quant_config,
            torch_dtype=torch.bfloat16,
        ).to(torch_device)
        for name, component in pipe.components.items():
            if name in components_to_quantize:
                self.assertTrue(getattr(component.config, "quantization_config", None) is not None)
                quantization_config = component.config.quantization_config

                if name == "text_encoder_2":
                    self.assertTrue(quantization_config.load_in_4bit)
                    self.assertTrue(quantization_config.quant_method == "bitsandbytes")
                else:
                    self.assertTrue(quantization_config.quant_method == "quanto")

        _ = pipe(self.prompt, num_inference_steps=self.num_inference_steps)

    def test_raises_error_for_invalid_config(self):
        with self.assertRaises(ValueError) as err_context:
            _ = PipelineQuantizationConfig(
                quant_mapping={
                    "transformer": QuantoConfig(weights_dtype="int8"),
                    "text_encoder_2": TranBitsAndBytesConfig(load_in_4bit=True, compute_dtype=torch.bfloat16),
                },
                quant_backend="bitsandbytes_4bit",
            )

        self.assertTrue(
            str(err_context.exception)
            == "Both `quant_backend` and `quant_mapping` cannot be specified at the same time."
        )

    def test_validation_for_kwargs(self):
        components_to_quantize = ["transformer", "text_encoder_2"]
        with self.assertRaises(ValueError) as err_context:
            _ = PipelineQuantizationConfig(
                quant_backend="quanto",
                quant_kwargs={"weights_dtype": "int8"},
                components_to_quantize=components_to_quantize,
            )

        self.assertTrue(
            "The signatures of the __init__ methods of the quantization config classes" in str(err_context.exception)
        )

    def test_raises_error_for_wrong_config_class(self):
        quant_config = {
            "transformer": QuantoConfig(weights_dtype="int8"),
            "text_encoder_2": TranBitsAndBytesConfig(load_in_4bit=True, compute_dtype=torch.bfloat16),
        }
        with self.assertRaises(ValueError) as err_context:
            _ = DiffusionPipeline.from_pretrained(
                self.model_name,
                quantization_config=quant_config,
                torch_dtype=torch.bfloat16,
            )
        self.assertTrue(
            str(err_context.exception) == "`quantization_config` must be an instance of `PipelineQuantizationConfig`."
        )

    def test_validation_for_mapping(self):
        with self.assertRaises(ValueError) as err_context:
            _ = PipelineQuantizationConfig(
                quant_mapping={
                    "transformer": DiffusionPipeline(),
                    "text_encoder_2": TranBitsAndBytesConfig(load_in_4bit=True, compute_dtype=torch.bfloat16),
                }
            )

        self.assertTrue("Provided config for module_name=transformer could not be found" in str(err_context.exception))

    def test_saving_loading(self):
        quant_config = PipelineQuantizationConfig(
            quant_mapping={
                "transformer": QuantoConfig(weights_dtype="int8"),
                "text_encoder_2": TranBitsAndBytesConfig(load_in_4bit=True, compute_dtype=torch.bfloat16),
            }
        )
        components_to_quantize = list(quant_config.quant_mapping.keys())
        pipe = DiffusionPipeline.from_pretrained(
            self.model_name,
            quantization_config=quant_config,
            torch_dtype=torch.bfloat16,
        ).to(torch_device)

        pipe_inputs = {"prompt": self.prompt, "num_inference_steps": self.num_inference_steps, "output_type": "latent"}
        output_1 = pipe(**pipe_inputs, generator=torch.manual_seed(self.seed)).images

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            loaded_pipe = DiffusionPipeline.from_pretrained(tmpdir, torch_dtype=torch.bfloat16).to(torch_device)
        for name, component in loaded_pipe.components.items():
            if name in components_to_quantize:
                self.assertTrue(getattr(component.config, "quantization_config", None) is not None)
                quantization_config = component.config.quantization_config

                if name == "text_encoder_2":
                    self.assertTrue(quantization_config.load_in_4bit)
                    self.assertTrue(quantization_config.quant_method == "bitsandbytes")
                else:
                    self.assertTrue(quantization_config.quant_method == "quanto")

        output_2 = loaded_pipe(**pipe_inputs, generator=torch.manual_seed(self.seed)).images

        self.assertTrue(torch.allclose(output_1, output_2))
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

    @parameterized.expand(["quant_kwargs", "quant_mapping"])
    def test_warn_invalid_component(self, method):
        invalid_component = "foo"
        if method == "quant_kwargs":
            components_to_quantize = ["transformer", invalid_component]
            quant_config = PipelineQuantizationConfig(
                quant_backend="bitsandbytes_8bit",
                quant_kwargs={"load_in_8bit": True},
                components_to_quantize=components_to_quantize,
            )
        else:
            quant_config = PipelineQuantizationConfig(
                quant_mapping={
                    "transformer": QuantoConfig("int8"),
                    invalid_component: TranBitsAndBytesConfig(load_in_8bit=True),
                }
            )

        logger = logging.get_logger("diffusers.pipelines.pipeline_loading_utils")
        logger.setLevel(logging.WARNING)
        with CaptureLogger(logger) as cap_logger:
            _ = DiffusionPipeline.from_pretrained(
                self.model_name,
                quantization_config=quant_config,
                torch_dtype=torch.bfloat16,
            )
        self.assertTrue(invalid_component in cap_logger.out)

    @parameterized.expand(["quant_kwargs", "quant_mapping"])
    def test_no_quantization_for_all_invalid_components(self, method):
        invalid_component = "foo"
        if method == "quant_kwargs":
            components_to_quantize = [invalid_component]
            quant_config = PipelineQuantizationConfig(
                quant_backend="bitsandbytes_8bit",
                quant_kwargs={"load_in_8bit": True},
                components_to_quantize=components_to_quantize,
            )
        else:
            quant_config = PipelineQuantizationConfig(
                quant_mapping={invalid_component: TranBitsAndBytesConfig(load_in_8bit=True)}
            )

        pipe = DiffusionPipeline.from_pretrained(
            self.model_name,
            quantization_config=quant_config,
            torch_dtype=torch.bfloat16,
        )
        for name, component in pipe.components.items():
            if isinstance(component, torch.nn.Module):
                self.assertTrue(not hasattr(component.config, "quantization_config"))
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

    @parameterized.expand(["quant_kwargs", "quant_mapping"])
    def test_quant_config_repr(self, method):
        component_name = "transformer"
        if method == "quant_kwargs":
            components_to_quantize = [component_name]
            quant_config = PipelineQuantizationConfig(
                quant_backend="bitsandbytes_8bit",
                quant_kwargs={"load_in_8bit": True},
                components_to_quantize=components_to_quantize,
            )
        else:
            quant_config = PipelineQuantizationConfig(
                quant_mapping={component_name: BitsAndBytesConfig(load_in_8bit=True)}
            )

        pipe = DiffusionPipeline.from_pretrained(
            self.model_name,
            quantization_config=quant_config,
            torch_dtype=torch.bfloat16,
        )
        self.assertTrue(getattr(pipe, "quantization_config", None) is not None)
        retrieved_config = pipe.quantization_config
        expected_config = """
transformer BitsAndBytesConfig {
  "_load_in_4bit": false,
  "_load_in_8bit": true,
  "bnb_4bit_compute_dtype": "float32",
  "bnb_4bit_quant_storage": "uint8",
  "bnb_4bit_quant_type": "fp4",
  "bnb_4bit_use_double_quant": false,
  "llm_int8_enable_fp32_cpu_offload": false,
  "llm_int8_has_fp16_weight": false,
  "llm_int8_skip_modules": null,
  "llm_int8_threshold": 6.0,
  "load_in_4bit": false,
  "load_in_8bit": true,
  "quant_method": "bitsandbytes"
}

"""
        expected_data = self._parse_config_string(expected_config)
        actual_data = self._parse_config_string(str(retrieved_config))
        self.assertTrue(actual_data == expected_data)

    def _parse_config_string(self, config_string: str) -> tuple[str, dict]:
        first_brace = config_string.find("{")
        if first_brace == -1:
            raise ValueError("Could not find opening brace '{' in the string.")

        json_part = config_string[first_brace:]
        data = json.loads(json_part)

        return data
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

    def test_single_component_to_quantize(self):
        component_to_quantize = "transformer"
        quant_config = PipelineQuantizationConfig(
            quant_backend="bitsandbytes_8bit",
            quant_kwargs={"load_in_8bit": True},
            components_to_quantize=component_to_quantize,
        )
        pipe = DiffusionPipeline.from_pretrained(
            self.model_name,
            quantization_config=quant_config,
            torch_dtype=torch.bfloat16,
        )
        for name, component in pipe.components.items():
            if name == component_to_quantize:
                self.assertTrue(hasattr(component.config, "quantization_config"))