test_alt_diffusion.py 8.59 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
Suraj Patil's avatar
Suraj Patil committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch
21
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer
Suraj Patil's avatar
Suraj Patil committed
22
23
24
25
26
27

from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNet2DConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
    RobertaSeriesConfig,
    RobertaSeriesModelWithTransformation,
)
28
from diffusers.utils import slow, torch_device
Suraj Patil's avatar
Suraj Patil committed
29
30
31
32
33
34
35
36
37
from diffusers.utils.testing_utils import require_torch_gpu

from ...test_pipelines_common import PipelineTesterMixin


torch.backends.cuda.matmul.allow_tf32 = False


class AltDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
38
    pipeline_class = AltDiffusionPipeline
Suraj Patil's avatar
Suraj Patil committed
39

40
    def get_dummy_components(self):
Suraj Patil's avatar
Suraj Patil committed
41
        torch.manual_seed(0)
42
        unet = UNet2DConditionModel(
Suraj Patil's avatar
Suraj Patil committed
43
44
45
46
47
48
49
50
51
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
52
53
54
55
56
57
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
Suraj Patil's avatar
Suraj Patil committed
58
59
        )
        torch.manual_seed(0)
60
        vae = AutoencoderKL(
Suraj Patil's avatar
Suraj Patil committed
61
62
63
64
65
66
67
68
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )

69
70
71
72
73
74
75
76
77
78
79
80
81
        # TODO: address the non-deterministic text encoder (fails for save-load tests)
        # torch.manual_seed(0)
        # text_encoder_config = RobertaSeriesConfig(
        #     hidden_size=32,
        #     project_dim=32,
        #     intermediate_size=37,
        #     layer_norm_eps=1e-05,
        #     num_attention_heads=4,
        #     num_hidden_layers=5,
        #     vocab_size=5002,
        # )
        # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)

Suraj Patil's avatar
Suraj Patil committed
82
        torch.manual_seed(0)
83
84
85
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
Suraj Patil's avatar
Suraj Patil committed
86
            hidden_size=32,
87
            projection_dim=32,
Suraj Patil's avatar
Suraj Patil committed
88
89
90
91
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
92
            pad_token_id=1,
Suraj Patil's avatar
Suraj Patil committed
93
94
            vocab_size=5002,
        )
95
        text_encoder = CLIPTextModel(text_encoder_config)
Suraj Patil's avatar
Suraj Patil committed
96

97
98
        tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta")
        tokenizer.model_max_length = 77
Suraj Patil's avatar
Suraj Patil committed
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
Suraj Patil's avatar
Suraj Patil committed
124
125
126
127

    def test_alt_diffusion_ddim(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

128
129
130
131
132
133
134
135
136
137
        components = self.get_dummy_components()
        torch.manual_seed(0)
        text_encoder_config = RobertaSeriesConfig(
            hidden_size=32,
            project_dim=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            vocab_size=5002,
Suraj Patil's avatar
Suraj Patil committed
138
        )
139
140
141
142
143
        # TODO: remove after fixing the non-deterministic text encoder
        text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
        components["text_encoder"] = text_encoder

        alt_pipe = AltDiffusionPipeline(**components)
Suraj Patil's avatar
Suraj Patil committed
144
145
146
        alt_pipe = alt_pipe.to(device)
        alt_pipe.set_progress_bar_config(disable=None)

147
148
149
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = "A photo of an astronaut"
        output = alt_pipe(**inputs)
Suraj Patil's avatar
Suraj Patil committed
150
151
152
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

153
        assert image.shape == (1, 64, 64, 3)
Patrick von Platen's avatar
Patrick von Platen committed
154
155
156
        expected_slice = np.array(
            [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093]
        )
Suraj Patil's avatar
Suraj Patil committed
157
158
159
160
161
162

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_alt_diffusion_pndm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

163
164
165
166
167
168
169
170
171
172
173
        components = self.get_dummy_components()
        components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
        torch.manual_seed(0)
        text_encoder_config = RobertaSeriesConfig(
            hidden_size=32,
            project_dim=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            vocab_size=5002,
Suraj Patil's avatar
Suraj Patil committed
174
        )
175
176
177
178
        # TODO: remove after fixing the non-deterministic text encoder
        text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
        components["text_encoder"] = text_encoder
        alt_pipe = AltDiffusionPipeline(**components)
Suraj Patil's avatar
Suraj Patil committed
179
180
181
        alt_pipe = alt_pipe.to(device)
        alt_pipe.set_progress_bar_config(disable=None)

182
183
        inputs = self.get_dummy_inputs(device)
        output = alt_pipe(**inputs)
Suraj Patil's avatar
Suraj Patil committed
184
185
186
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

187
        assert image.shape == (1, 64, 64, 3)
Patrick von Platen's avatar
Patrick von Platen committed
188
189
190
        expected_slice = np.array(
            [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237]
        )
191

Suraj Patil's avatar
Suraj Patil committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2


@slow
@require_torch_gpu
class AltDiffusionPipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_alt_diffusion(self):
        # make sure here that pndm scheduler skips prk
        alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", safety_checker=None)
        alt_pipe = alt_pipe.to(torch_device)
        alt_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
211
212
        generator = torch.manual_seed(0)
        output = alt_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np")
Suraj Patil's avatar
Suraj Patil committed
213
214
215
216
217
218

        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
219
220
        expected_slice = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586])

Suraj Patil's avatar
Suraj Patil committed
221
222
223
224
225
226
227
228
229
230
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_alt_diffusion_fast_ddim(self):
        scheduler = DDIMScheduler.from_pretrained("BAAI/AltDiffusion", subfolder="scheduler")

        alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", scheduler=scheduler, safety_checker=None)
        alt_pipe = alt_pipe.to(torch_device)
        alt_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
231
        generator = torch.manual_seed(0)
Suraj Patil's avatar
Suraj Patil committed
232

233
        output = alt_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy")
Suraj Patil's avatar
Suraj Patil committed
234
235
236
237
238
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
239
        expected_slice = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323])
Suraj Patil's avatar
Suraj Patil committed
240

241
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2