scheduling_dpmsolver_multistep_flax.py 26.6 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 TSAIL Team and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver

from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import flax
import jax
import jax.numpy as jnp

from ..configuration_utils import ConfigMixin, register_to_config
25
from .scheduling_utils_flax import (
26
    CommonSchedulerState,
Kashif Rasul's avatar
Kashif Rasul committed
27
    FlaxKarrasDiffusionSchedulers,
28
29
    FlaxSchedulerMixin,
    FlaxSchedulerOutput,
30
    add_noise_common,
31
)
32
33
34
35


@flax.struct.dataclass
class DPMSolverMultistepSchedulerState:
36
37
38
39
40
    common: CommonSchedulerState
    alpha_t: jnp.ndarray
    sigma_t: jnp.ndarray
    lambda_t: jnp.ndarray

41
    # setable values
42
43
    init_noise_sigma: jnp.ndarray
    timesteps: jnp.ndarray
44
45
46
47
    num_inference_steps: Optional[int] = None

    # running values
    model_outputs: Optional[jnp.ndarray] = None
48
49
    lower_order_nums: Optional[jnp.int32] = None
    prev_timestep: Optional[jnp.int32] = None
50
51
52
    cur_sample: Optional[jnp.ndarray] = None

    @classmethod
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    def create(
        cls,
        common: CommonSchedulerState,
        alpha_t: jnp.ndarray,
        sigma_t: jnp.ndarray,
        lambda_t: jnp.ndarray,
        init_noise_sigma: jnp.ndarray,
        timesteps: jnp.ndarray,
    ):
        return cls(
            common=common,
            alpha_t=alpha_t,
            sigma_t=sigma_t,
            lambda_t=lambda_t,
            init_noise_sigma=init_noise_sigma,
            timesteps=timesteps,
        )
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94


@dataclass
class FlaxDPMSolverMultistepSchedulerOutput(FlaxSchedulerOutput):
    state: DPMSolverMultistepSchedulerState


class FlaxDPMSolverMultistepScheduler(FlaxSchedulerMixin, ConfigMixin):
    """
    DPM-Solver (and the improved version DPM-Solver++) is a fast dedicated high-order solver for diffusion ODEs with
    the convergence order guarantee. Empirically, sampling by DPM-Solver with only 20 steps can generate high-quality
    samples, and it can generate quite good samples even in only 10 steps.

    For more details, see the original paper: https://arxiv.org/abs/2206.00927 and https://arxiv.org/abs/2211.01095

    Currently, we support the multistep DPM-Solver for both noise prediction models and data prediction models. We
    recommend to use `solver_order=2` for guided sampling, and `solver_order=3` for unconditional sampling.

    We also support the "dynamic thresholding" method in Imagen (https://arxiv.org/abs/2205.11487). For pixel-space
    diffusion models, you can set both `algorithm_type="dpmsolver++"` and `thresholding=True` to use the dynamic
    thresholding. Note that the thresholding method is unsuitable for latent-space diffusion models (such as
    stable-diffusion).

    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
95
96
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

    For more details, see the original paper: https://arxiv.org/abs/2206.00927 and https://arxiv.org/abs/2211.01095

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
        solver_order (`int`, default `2`):
            the order of DPM-Solver; can be `1` or `2` or `3`. We recommend to use `solver_order=2` for guided
            sampling, and `solver_order=3` for unconditional sampling.
112
        prediction_type (`str`, default `epsilon`):
113
114
            indicates whether the model predicts the noise (epsilon), or the data / `x0`. One of `epsilon`, `sample`,
            or `v-prediction`.
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        thresholding (`bool`, default `False`):
            whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487).
            For pixel-space diffusion models, you can set both `algorithm_type=dpmsolver++` and `thresholding=True` to
            use the dynamic thresholding. Note that the thresholding method is unsuitable for latent-space diffusion
            models (such as stable-diffusion).
        dynamic_thresholding_ratio (`float`, default `0.995`):
            the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen
            (https://arxiv.org/abs/2205.11487).
        sample_max_value (`float`, default `1.0`):
            the threshold value for dynamic thresholding. Valid only when `thresholding=True` and
            `algorithm_type="dpmsolver++`.
        algorithm_type (`str`, default `dpmsolver++`):
            the algorithm type for the solver. Either `dpmsolver` or `dpmsolver++`. The `dpmsolver` type implements the
            algorithms in https://arxiv.org/abs/2206.00927, and the `dpmsolver++` type implements the algorithms in
            https://arxiv.org/abs/2211.01095. We recommend to use `dpmsolver++` with `solver_order=2` for guided
            sampling (e.g. stable-diffusion).
        solver_type (`str`, default `midpoint`):
            the solver type for the second-order solver. Either `midpoint` or `heun`. The solver type slightly affects
            the sample quality, especially for small number of steps. We empirically find that `midpoint` solvers are
            slightly better, so we recommend to use the `midpoint` type.
        lower_order_final (`bool`, default `True`):
            whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. We empirically
            find this trick can stabilize the sampling of DPM-Solver for steps < 15, especially for steps <= 10.
138
139
        dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
            the `dtype` used for params and computation.
140
141
    """

Kashif Rasul's avatar
Kashif Rasul committed
142
    _compatibles = [e.name for e in FlaxKarrasDiffusionSchedulers]
143

144
145
    dtype: jnp.dtype

146
147
148
149
150
151
152
153
154
155
156
157
158
    @property
    def has_state(self):
        return True

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[jnp.ndarray] = None,
        solver_order: int = 2,
159
        prediction_type: str = "epsilon",
160
161
162
163
164
165
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
        algorithm_type: str = "dpmsolver++",
        solver_type: str = "midpoint",
        lower_order_final: bool = True,
166
        dtype: jnp.dtype = jnp.float32,
167
    ):
168
169
170
171
172
        self.dtype = dtype

    def create_state(self, common: Optional[CommonSchedulerState] = None) -> DPMSolverMultistepSchedulerState:
        if common is None:
            common = CommonSchedulerState.create(self)
173
174

        # Currently we only support VP-type noise schedule
175
176
177
178
179
180
181
182
183
        alpha_t = jnp.sqrt(common.alphas_cumprod)
        sigma_t = jnp.sqrt(1 - common.alphas_cumprod)
        lambda_t = jnp.log(alpha_t) - jnp.log(sigma_t)

        # settings for DPM-Solver
        if self.config.algorithm_type not in ["dpmsolver", "dpmsolver++"]:
            raise NotImplementedError(f"{self.config.algorithm_type} does is not implemented for {self.__class__}")
        if self.config.solver_type not in ["midpoint", "heun"]:
            raise NotImplementedError(f"{self.config.solver_type} does is not implemented for {self.__class__}")
184
185

        # standard deviation of the initial noise distribution
186
        init_noise_sigma = jnp.array(1.0, dtype=self.dtype)
187

188
        timesteps = jnp.arange(0, self.config.num_train_timesteps).round()[::-1]
189

190
191
192
193
194
195
196
197
        return DPMSolverMultistepSchedulerState.create(
            common=common,
            alpha_t=alpha_t,
            sigma_t=sigma_t,
            lambda_t=lambda_t,
            init_noise_sigma=init_noise_sigma,
            timesteps=timesteps,
        )
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

    def set_timesteps(
        self, state: DPMSolverMultistepSchedulerState, num_inference_steps: int, shape: Tuple
    ) -> DPMSolverMultistepSchedulerState:
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            state (`DPMSolverMultistepSchedulerState`):
                the `FlaxDPMSolverMultistepScheduler` state data class instance.
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
            shape (`Tuple`):
                the shape of the samples to be generated.
        """
213

214
215
216
217
218
219
        timesteps = (
            jnp.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps + 1)
            .round()[::-1][:-1]
            .astype(jnp.int32)
        )

220
221
222
223
224
225
226
        # initial running values

        model_outputs = jnp.zeros((self.config.solver_order,) + shape, dtype=self.dtype)
        lower_order_nums = jnp.int32(0)
        prev_timestep = jnp.int32(-1)
        cur_sample = jnp.zeros(shape, dtype=self.dtype)

227
228
229
        return state.replace(
            num_inference_steps=num_inference_steps,
            timesteps=timesteps,
230
231
232
233
            model_outputs=model_outputs,
            lower_order_nums=lower_order_nums,
            prev_timestep=prev_timestep,
            cur_sample=cur_sample,
234
235
236
237
        )

    def convert_model_output(
        self,
238
        state: DPMSolverMultistepSchedulerState,
239
240
241
242
243
244
245
        model_output: jnp.ndarray,
        timestep: int,
        sample: jnp.ndarray,
    ) -> jnp.ndarray:
        """
        Convert the model output to the corresponding type that the algorithm (DPM-Solver / DPM-Solver++) needs.

246
        DPM-Solver is designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
        discretize an integral of the data prediction model. So we need to first convert the model output to the
        corresponding type to match the algorithm.

        Note that the algorithm type and the model type is decoupled. That is to say, we can use either DPM-Solver or
        DPM-Solver++ for both noise prediction model and data prediction model.

        Args:
            model_output (`jnp.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`jnp.ndarray`):
                current instance of sample being created by diffusion process.

        Returns:
            `jnp.ndarray`: the converted model output.
        """
        # DPM-Solver++ needs to solve an integral of the data prediction model.
        if self.config.algorithm_type == "dpmsolver++":
264
            if self.config.prediction_type == "epsilon":
265
                alpha_t, sigma_t = state.alpha_t[timestep], state.sigma_t[timestep]
266
                x0_pred = (sample - sigma_t * model_output) / alpha_t
267
            elif self.config.prediction_type == "sample":
268
                x0_pred = model_output
269
            elif self.config.prediction_type == "v_prediction":
270
                alpha_t, sigma_t = state.alpha_t[timestep], state.sigma_t[timestep]
271
                x0_pred = alpha_t * sample - sigma_t * model_output
272
273
            else:
                raise ValueError(
274
275
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
                    " or `v_prediction` for the FlaxDPMSolverMultistepScheduler."
276
277
                )

278
279
280
281
282
283
284
285
286
287
288
289
            if self.config.thresholding:
                # Dynamic thresholding in https://arxiv.org/abs/2205.11487
                dynamic_max_val = jnp.percentile(
                    jnp.abs(x0_pred), self.config.dynamic_thresholding_ratio, axis=tuple(range(1, x0_pred.ndim))
                )
                dynamic_max_val = jnp.maximum(
                    dynamic_max_val, self.config.sample_max_value * jnp.ones_like(dynamic_max_val)
                )
                x0_pred = jnp.clip(x0_pred, -dynamic_max_val, dynamic_max_val) / dynamic_max_val
            return x0_pred
        # DPM-Solver needs to solve an integral of the noise prediction model.
        elif self.config.algorithm_type == "dpmsolver":
290
            if self.config.prediction_type == "epsilon":
291
                return model_output
292
            elif self.config.prediction_type == "sample":
293
                alpha_t, sigma_t = state.alpha_t[timestep], state.sigma_t[timestep]
294
295
                epsilon = (sample - alpha_t * model_output) / sigma_t
                return epsilon
296
            elif self.config.prediction_type == "v_prediction":
297
                alpha_t, sigma_t = state.alpha_t[timestep], state.sigma_t[timestep]
298
299
                epsilon = alpha_t * model_output + sigma_t * sample
                return epsilon
300
301
            else:
                raise ValueError(
302
303
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
                    " or `v_prediction` for the FlaxDPMSolverMultistepScheduler."
304
                )
305
306

    def dpm_solver_first_order_update(
307
308
309
310
311
312
        self,
        state: DPMSolverMultistepSchedulerState,
        model_output: jnp.ndarray,
        timestep: int,
        prev_timestep: int,
        sample: jnp.ndarray,
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
    ) -> jnp.ndarray:
        """
        One step for the first-order DPM-Solver (equivalent to DDIM).

        See https://arxiv.org/abs/2206.00927 for the detailed derivation.

        Args:
            model_output (`jnp.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            prev_timestep (`int`): previous discrete timestep in the diffusion chain.
            sample (`jnp.ndarray`):
                current instance of sample being created by diffusion process.

        Returns:
            `jnp.ndarray`: the sample tensor at the previous timestep.
        """
        t, s0 = prev_timestep, timestep
        m0 = model_output
331
332
333
        lambda_t, lambda_s = state.lambda_t[t], state.lambda_t[s0]
        alpha_t, alpha_s = state.alpha_t[t], state.alpha_t[s0]
        sigma_t, sigma_s = state.sigma_t[t], state.sigma_t[s0]
334
335
336
337
338
339
340
341
342
        h = lambda_t - lambda_s
        if self.config.algorithm_type == "dpmsolver++":
            x_t = (sigma_t / sigma_s) * sample - (alpha_t * (jnp.exp(-h) - 1.0)) * m0
        elif self.config.algorithm_type == "dpmsolver":
            x_t = (alpha_t / alpha_s) * sample - (sigma_t * (jnp.exp(h) - 1.0)) * m0
        return x_t

    def multistep_dpm_solver_second_order_update(
        self,
343
        state: DPMSolverMultistepSchedulerState,
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
        model_output_list: jnp.ndarray,
        timestep_list: List[int],
        prev_timestep: int,
        sample: jnp.ndarray,
    ) -> jnp.ndarray:
        """
        One step for the second-order multistep DPM-Solver.

        Args:
            model_output_list (`List[jnp.ndarray]`):
                direct outputs from learned diffusion model at current and latter timesteps.
            timestep (`int`): current and latter discrete timestep in the diffusion chain.
            prev_timestep (`int`): previous discrete timestep in the diffusion chain.
            sample (`jnp.ndarray`):
                current instance of sample being created by diffusion process.

        Returns:
            `jnp.ndarray`: the sample tensor at the previous timestep.
        """
        t, s0, s1 = prev_timestep, timestep_list[-1], timestep_list[-2]
        m0, m1 = model_output_list[-1], model_output_list[-2]
365
366
367
        lambda_t, lambda_s0, lambda_s1 = state.lambda_t[t], state.lambda_t[s0], state.lambda_t[s1]
        alpha_t, alpha_s0 = state.alpha_t[t], state.alpha_t[s0]
        sigma_t, sigma_s0 = state.sigma_t[t], state.sigma_t[s0]
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
        h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
        r0 = h_0 / h
        D0, D1 = m0, (1.0 / r0) * (m0 - m1)
        if self.config.algorithm_type == "dpmsolver++":
            # See https://arxiv.org/abs/2211.01095 for detailed derivations
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s0) * sample
                    - (alpha_t * (jnp.exp(-h) - 1.0)) * D0
                    - 0.5 * (alpha_t * (jnp.exp(-h) - 1.0)) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s0) * sample
                    - (alpha_t * (jnp.exp(-h) - 1.0)) * D0
                    + (alpha_t * ((jnp.exp(-h) - 1.0) / h + 1.0)) * D1
                )
        elif self.config.algorithm_type == "dpmsolver":
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
            if self.config.solver_type == "midpoint":
                x_t = (
                    (alpha_t / alpha_s0) * sample
                    - (sigma_t * (jnp.exp(h) - 1.0)) * D0
                    - 0.5 * (sigma_t * (jnp.exp(h) - 1.0)) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (alpha_t / alpha_s0) * sample
                    - (sigma_t * (jnp.exp(h) - 1.0)) * D0
                    - (sigma_t * ((jnp.exp(h) - 1.0) / h - 1.0)) * D1
                )
        return x_t

    def multistep_dpm_solver_third_order_update(
        self,
403
        state: DPMSolverMultistepSchedulerState,
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
        model_output_list: jnp.ndarray,
        timestep_list: List[int],
        prev_timestep: int,
        sample: jnp.ndarray,
    ) -> jnp.ndarray:
        """
        One step for the third-order multistep DPM-Solver.

        Args:
            model_output_list (`List[jnp.ndarray]`):
                direct outputs from learned diffusion model at current and latter timesteps.
            timestep (`int`): current and latter discrete timestep in the diffusion chain.
            prev_timestep (`int`): previous discrete timestep in the diffusion chain.
            sample (`jnp.ndarray`):
                current instance of sample being created by diffusion process.

        Returns:
            `jnp.ndarray`: the sample tensor at the previous timestep.
        """
        t, s0, s1, s2 = prev_timestep, timestep_list[-1], timestep_list[-2], timestep_list[-3]
        m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]
        lambda_t, lambda_s0, lambda_s1, lambda_s2 = (
426
427
428
429
            state.lambda_t[t],
            state.lambda_t[s0],
            state.lambda_t[s1],
            state.lambda_t[s2],
430
        )
431
432
        alpha_t, alpha_s0 = state.alpha_t[t], state.alpha_t[s0]
        sigma_t, sigma_s0 = state.sigma_t[t], state.sigma_t[s0]
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
        h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2
        r0, r1 = h_0 / h, h_1 / h
        D0 = m0
        D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2)
        D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1)
        D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1)
        if self.config.algorithm_type == "dpmsolver++":
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
            x_t = (
                (sigma_t / sigma_s0) * sample
                - (alpha_t * (jnp.exp(-h) - 1.0)) * D0
                + (alpha_t * ((jnp.exp(-h) - 1.0) / h + 1.0)) * D1
                - (alpha_t * ((jnp.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2
            )
        elif self.config.algorithm_type == "dpmsolver":
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
            x_t = (
                (alpha_t / alpha_s0) * sample
                - (sigma_t * (jnp.exp(h) - 1.0)) * D0
                - (sigma_t * ((jnp.exp(h) - 1.0) / h - 1.0)) * D1
                - (sigma_t * ((jnp.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
            )
        return x_t

    def step(
        self,
        state: DPMSolverMultistepSchedulerState,
        model_output: jnp.ndarray,
        timestep: int,
        sample: jnp.ndarray,
        return_dict: bool = True,
    ) -> Union[FlaxDPMSolverMultistepSchedulerOutput, Tuple]:
        """
        Predict the sample at the previous timestep by DPM-Solver. Core function to propagate the diffusion process
        from the learned model outputs (most often the predicted noise).

        Args:
            state (`DPMSolverMultistepSchedulerState`):
                the `FlaxDPMSolverMultistepScheduler` state data class instance.
            model_output (`jnp.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`jnp.ndarray`):
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than FlaxDPMSolverMultistepSchedulerOutput class

        Returns:
            [`FlaxDPMSolverMultistepSchedulerOutput`] or `tuple`: [`FlaxDPMSolverMultistepSchedulerOutput`] if
            `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.

        """
483
484
485
486
        if state.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )
487

488
489
490
491
492
493
        (step_index,) = jnp.where(state.timesteps == timestep, size=1)
        step_index = step_index[0]

        prev_timestep = jax.lax.select(step_index == len(state.timesteps) - 1, 0, state.timesteps[step_index + 1])

        model_output = self.convert_model_output(state, model_output, timestep, sample)
494
495
496
497
498
499
500
501
502
503
504

        model_outputs_new = jnp.roll(state.model_outputs, -1, axis=0)
        model_outputs_new = model_outputs_new.at[-1].set(model_output)
        state = state.replace(
            model_outputs=model_outputs_new,
            prev_timestep=prev_timestep,
            cur_sample=sample,
        )

        def step_1(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray:
            return self.dpm_solver_first_order_update(
505
                state,
506
                state.model_outputs[-1],
507
                state.timesteps[step_index],
508
509
510
511
512
513
                state.prev_timestep,
                state.cur_sample,
            )

        def step_23(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray:
            def step_2(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray:
514
                timestep_list = jnp.array([state.timesteps[step_index - 1], state.timesteps[step_index]])
515
                return self.multistep_dpm_solver_second_order_update(
516
                    state,
517
518
519
520
521
522
523
524
525
                    state.model_outputs,
                    timestep_list,
                    state.prev_timestep,
                    state.cur_sample,
                )

            def step_3(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray:
                timestep_list = jnp.array(
                    [
526
527
528
                        state.timesteps[step_index - 2],
                        state.timesteps[step_index - 1],
                        state.timesteps[step_index],
529
530
531
                    ]
                )
                return self.multistep_dpm_solver_third_order_update(
532
                    state,
533
534
535
536
537
538
                    state.model_outputs,
                    timestep_list,
                    state.prev_timestep,
                    state.cur_sample,
                )

539
540
541
            step_2_output = step_2(state)
            step_3_output = step_3(state)

542
            if self.config.solver_order == 2:
543
                return step_2_output
544
            elif self.config.lower_order_final and len(state.timesteps) < 15:
545
                return jax.lax.select(
546
                    state.lower_order_nums < 2,
547
548
549
550
551
                    step_2_output,
                    jax.lax.select(
                        step_index == len(state.timesteps) - 2,
                        step_2_output,
                        step_3_output,
552
553
554
                    ),
                )
            else:
555
                return jax.lax.select(
556
                    state.lower_order_nums < 2,
557
558
                    step_2_output,
                    step_3_output,
559
560
                )

561
562
563
        step_1_output = step_1(state)
        step_23_output = step_23(state)

564
        if self.config.solver_order == 1:
565
566
            prev_sample = step_1_output

567
        elif self.config.lower_order_final and len(state.timesteps) < 15:
568
            prev_sample = jax.lax.select(
569
                state.lower_order_nums < 1,
570
571
572
573
574
                step_1_output,
                jax.lax.select(
                    step_index == len(state.timesteps) - 1,
                    step_1_output,
                    step_23_output,
575
576
                ),
            )
577

578
        else:
579
            prev_sample = jax.lax.select(
580
                state.lower_order_nums < 1,
581
582
                step_1_output,
                step_23_output,
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
            )

        state = state.replace(
            lower_order_nums=jnp.minimum(state.lower_order_nums + 1, self.config.solver_order),
        )

        if not return_dict:
            return (prev_sample, state)

        return FlaxDPMSolverMultistepSchedulerOutput(prev_sample=prev_sample, state=state)

    def scale_model_input(
        self, state: DPMSolverMultistepSchedulerState, sample: jnp.ndarray, timestep: Optional[int] = None
    ) -> jnp.ndarray:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            state (`DPMSolverMultistepSchedulerState`):
                the `FlaxDPMSolverMultistepScheduler` state data class instance.
            sample (`jnp.ndarray`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `jnp.ndarray`: scaled input sample
        """
        return sample

    def add_noise(
        self,
614
        state: DPMSolverMultistepSchedulerState,
615
616
617
618
        original_samples: jnp.ndarray,
        noise: jnp.ndarray,
        timesteps: jnp.ndarray,
    ) -> jnp.ndarray:
619
        return add_noise_common(state.common, original_samples, noise, timesteps)
620
621
622

    def __len__(self):
        return self.config.num_train_timesteps