pipeline_repaint.py 7.61 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 ETH Zurich Computer Vision Lab and The HuggingFace Team. All rights reserved.
Revist's avatar
Revist committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


16
from typing import List, Optional, Tuple, Union
Revist's avatar
Revist committed
17
18
19

import numpy as np
import PIL
20
import torch
Revist's avatar
Revist committed
21
22
23

from ...models import UNet2DModel
from ...schedulers import RePaintScheduler
24
from ...utils import PIL_INTERPOLATION, deprecate, logging, randn_tensor
25
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
Revist's avatar
Revist committed
26
27


28
29
30
31
32
33
34
35
36
37
38
39
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.preprocess
def _preprocess_image(image: Union[List, PIL.Image.Image, torch.Tensor]):
    if isinstance(image, torch.Tensor):
        return image
    elif isinstance(image, PIL.Image.Image):
        image = [image]

    if isinstance(image[0], PIL.Image.Image):
        w, h = image[0].size
40
        w, h = map(lambda x: x - x % 8, (w, h))  # resize to integer multiple of 8
41
42
43
44
45
46
47
48
49

        image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
        image = np.concatenate(image, axis=0)
        image = np.array(image).astype(np.float32) / 255.0
        image = image.transpose(0, 3, 1, 2)
        image = 2.0 * image - 1.0
        image = torch.from_numpy(image)
    elif isinstance(image[0], torch.Tensor):
        image = torch.cat(image, dim=0)
Revist's avatar
Revist committed
50
51
52
    return image


53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
def _preprocess_mask(mask: Union[List, PIL.Image.Image, torch.Tensor]):
    if isinstance(mask, torch.Tensor):
        return mask
    elif isinstance(mask, PIL.Image.Image):
        mask = [mask]

    if isinstance(mask[0], PIL.Image.Image):
        w, h = mask[0].size
        w, h = map(lambda x: x - x % 32, (w, h))  # resize to integer multiple of 32
        mask = [np.array(m.convert("L").resize((w, h), resample=PIL_INTERPOLATION["nearest"]))[None, :] for m in mask]
        mask = np.concatenate(mask, axis=0)
        mask = mask.astype(np.float32) / 255.0
        mask[mask < 0.5] = 0
        mask[mask >= 0.5] = 1
        mask = torch.from_numpy(mask)
    elif isinstance(mask[0], torch.Tensor):
        mask = torch.cat(mask, dim=0)
Revist's avatar
Revist committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    return mask


class RePaintPipeline(DiffusionPipeline):
    unet: UNet2DModel
    scheduler: RePaintScheduler

    def __init__(self, unet, scheduler):
        super().__init__()
        self.register_modules(unet=unet, scheduler=scheduler)

    @torch.no_grad()
    def __call__(
        self,
84
85
        image: Union[torch.Tensor, PIL.Image.Image],
        mask_image: Union[torch.Tensor, PIL.Image.Image],
Revist's avatar
Revist committed
86
87
88
89
        num_inference_steps: int = 250,
        eta: float = 0.0,
        jump_length: int = 10,
        jump_n_sample: int = 10,
90
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
Revist's avatar
Revist committed
91
92
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
93
        **kwargs,
Revist's avatar
Revist committed
94
95
96
    ) -> Union[ImagePipelineOutput, Tuple]:
        r"""
        Args:
97
            image (`torch.FloatTensor` or `PIL.Image.Image`):
Revist's avatar
Revist committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
                The original image to inpaint on.
            mask_image (`torch.FloatTensor` or `PIL.Image.Image`):
                The mask_image where 0.0 values define which part of the original image to inpaint (change).
            num_inference_steps (`int`, *optional*, defaults to 1000):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            eta (`float`):
                The weight of noise for added noise in a diffusion step. Its value is between 0.0 and 1.0 - 0.0 is DDIM
                and 1.0 is DDPM scheduler respectively.
            jump_length (`int`, *optional*, defaults to 10):
                The number of steps taken forward in time before going backward in time for a single jump ("j" in
                RePaint paper). Take a look at Figure 9 and 10 in https://arxiv.org/pdf/2201.09865.pdf.
            jump_n_sample (`int`, *optional*, defaults to 10):
                The number of times we will make forward time jump for a given chosen time sample. Take a look at
                Figure 9 and 10 in https://arxiv.org/pdf/2201.09865.pdf.
            generator (`torch.Generator`, *optional*):
114
115
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
Revist's avatar
Revist committed
116
117
118
119
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
120
                Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
Revist's avatar
Revist committed
121
122

        Returns:
123
124
            [`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is
            True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images.
Revist's avatar
Revist committed
125
126
        """

127
128
129
130
131
132
133
134
        message = "Please use `image` instead of `original_image`."
        original_image = deprecate("original_image", "0.15.0", message, take_from=kwargs)
        original_image = original_image or image

        original_image = _preprocess_image(original_image)
        original_image = original_image.to(device=self.device, dtype=self.unet.dtype)
        mask_image = _preprocess_mask(mask_image)
        mask_image = mask_image.to(device=self.device, dtype=self.unet.dtype)
Revist's avatar
Revist committed
135

136
137
        batch_size = original_image.shape[0]

Revist's avatar
Revist committed
138
        # sample gaussian noise to begin the loop
139
140
141
142
143
144
145
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        image_shape = original_image.shape
146
        image = randn_tensor(image_shape, generator=generator, device=self.device, dtype=self.unet.dtype)
Revist's avatar
Revist committed
147
148
149
150
151
152

        # set step values
        self.scheduler.set_timesteps(num_inference_steps, jump_length, jump_n_sample, self.device)
        self.scheduler.eta = eta

        t_last = self.scheduler.timesteps[0] + 1
153
        generator = generator[0] if isinstance(generator, list) else generator
154
        for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
Revist's avatar
Revist committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
            if t < t_last:
                # predict the noise residual
                model_output = self.unet(image, t).sample
                # compute previous image: x_t -> x_t-1
                image = self.scheduler.step(model_output, t, image, original_image, mask_image, generator).prev_sample

            else:
                # compute the reverse: x_t-1 -> x_t
                image = self.scheduler.undo_step(image, t_last, generator)
            t_last = t

        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()
        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)