unet_1d.py 10.1 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
17
18
19
20
21
22
23
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import torch
import torch.nn as nn

from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
24
from .modeling_utils import ModelMixin
25
from .unet_1d_blocks import get_down_block, get_mid_block, get_out_block, get_up_block
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46


@dataclass
class UNet1DOutput(BaseOutput):
    """
    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, sample_size)`):
            Hidden states output. Output of last layer of model.
    """

    sample: torch.FloatTensor


class UNet1DModel(ModelMixin, ConfigMixin):
    r"""
    UNet1DModel is a 1D UNet model that takes in a noisy sample and a timestep and returns sample shaped output.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
    implements for all the model (such as downloading or saving, etc.)

    Parameters:
47
        sample_size (`int`, *optional*): Default length of sample. Should be adaptable at runtime.
48
49
50
        in_channels (`int`, *optional*, defaults to 2): Number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 2): Number of channels in the output.
        time_embedding_type (`str`, *optional*, defaults to `"fourier"`): Type of time embedding to use.
51
        freq_shift (`float`, *optional*, defaults to 0.0): Frequency shift for fourier time embedding.
52
53
54
55
56
57
58
59
        flip_sin_to_cos (`bool`, *optional*, defaults to :
            obj:`False`): Whether to flip sin to cos for fourier time embedding.
        down_block_types (`Tuple[str]`, *optional*, defaults to :
            obj:`("DownBlock1D", "DownBlock1DNoSkip", "AttnDownBlock1D")`): Tuple of downsample block types.
        up_block_types (`Tuple[str]`, *optional*, defaults to :
            obj:`("UpBlock1D", "UpBlock1DNoSkip", "AttnUpBlock1D")`): Tuple of upsample block types.
        block_out_channels (`Tuple[int]`, *optional*, defaults to :
            obj:`(32, 32, 64)`): Tuple of block output channels.
60
61
62
63
64
65
66
        mid_block_type (`str`, *optional*, defaults to "UNetMidBlock1D"): block type for middle of UNet.
        out_block_type (`str`, *optional*, defaults to `None`): optional output processing of UNet.
        act_fn (`str`, *optional*, defaults to None): optional activitation function in UNet blocks.
        norm_num_groups (`int`, *optional*, defaults to 8): group norm member count in UNet blocks.
        layers_per_block (`int`, *optional*, defaults to 1): added number of layers in a UNet block.
        downsample_each_block (`int`, *optional*, defaults to False:
            experimental feature for using a UNet without upsampling.
67
68
69
70
71
72
73
74
75
76
77
78
79
    """

    @register_to_config
    def __init__(
        self,
        sample_size: int = 65536,
        sample_rate: Optional[int] = None,
        in_channels: int = 2,
        out_channels: int = 2,
        extra_in_channels: int = 0,
        time_embedding_type: str = "fourier",
        flip_sin_to_cos: bool = True,
        use_timestep_embedding: bool = False,
80
        freq_shift: float = 0.0,
81
82
        down_block_types: Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D"),
        up_block_types: Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip"),
83
84
        mid_block_type: Tuple[str] = "UNetMidBlock1D",
        out_block_type: str = None,
85
        block_out_channels: Tuple[int] = (32, 32, 64),
86
87
88
89
        act_fn: str = None,
        norm_num_groups: int = 8,
        layers_per_block: int = 1,
        downsample_each_block: bool = False,
90
91
92
93
94
95
96
97
98
99
100
    ):
        super().__init__()
        self.sample_size = sample_size

        # time
        if time_embedding_type == "fourier":
            self.time_proj = GaussianFourierProjection(
                embedding_size=8, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
            )
            timestep_input_dim = 2 * block_out_channels[0]
        elif time_embedding_type == "positional":
101
102
103
            self.time_proj = Timesteps(
                block_out_channels[0], flip_sin_to_cos=flip_sin_to_cos, downscale_freq_shift=freq_shift
            )
104
105
106
107
            timestep_input_dim = block_out_channels[0]

        if use_timestep_embedding:
            time_embed_dim = block_out_channels[0] * 4
108
109
110
111
112
113
            self.time_mlp = TimestepEmbedding(
                in_channels=timestep_input_dim,
                time_embed_dim=time_embed_dim,
                act_fn=act_fn,
                out_dim=block_out_channels[0],
            )
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

        self.down_blocks = nn.ModuleList([])
        self.mid_block = None
        self.up_blocks = nn.ModuleList([])
        self.out_block = None

        # down
        output_channel = in_channels
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]

            if i == 0:
                input_channel += extra_in_channels

129
130
            is_final_block = i == len(block_out_channels) - 1

131
132
            down_block = get_down_block(
                down_block_type,
133
                num_layers=layers_per_block,
134
135
                in_channels=input_channel,
                out_channels=output_channel,
136
137
                temb_channels=block_out_channels[0],
                add_downsample=not is_final_block or downsample_each_block,
138
139
140
141
142
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = get_mid_block(
143
            mid_block_type,
144
            in_channels=block_out_channels[-1],
145
146
147
148
149
            mid_channels=block_out_channels[-1],
            out_channels=block_out_channels[-1],
            embed_dim=block_out_channels[0],
            num_layers=layers_per_block,
            add_downsample=downsample_each_block,
150
151
152
153
154
        )

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
155
156
157
158
159
        if out_block_type is None:
            final_upsample_channels = out_channels
        else:
            final_upsample_channels = block_out_channels[0]

160
161
        for i, up_block_type in enumerate(up_block_types):
            prev_output_channel = output_channel
162
163
164
165
166
            output_channel = (
                reversed_block_out_channels[i + 1] if i < len(up_block_types) - 1 else final_upsample_channels
            )

            is_final_block = i == len(block_out_channels) - 1
167
168
169

            up_block = get_up_block(
                up_block_type,
170
                num_layers=layers_per_block,
171
172
                in_channels=prev_output_channel,
                out_channels=output_channel,
173
174
                temb_channels=block_out_channels[0],
                add_upsample=not is_final_block,
175
176
177
178
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

179
180
181
182
183
184
185
186
187
188
        # out
        num_groups_out = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 32)
        self.out_block = get_out_block(
            out_block_type=out_block_type,
            num_groups_out=num_groups_out,
            embed_dim=block_out_channels[0],
            out_channels=out_channels,
            act_fn=act_fn,
            fc_dim=block_out_channels[-1] // 4,
        )
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

    def forward(
        self,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        return_dict: bool = True,
    ) -> Union[UNet1DOutput, Tuple]:
        r"""
        Args:
            sample (`torch.FloatTensor`): `(batch_size, sample_size, num_channels)` noisy inputs tensor
            timestep (`torch.FloatTensor` or `float` or `int): (batch) timesteps
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.unet_1d.UNet1DOutput`] instead of a plain tuple.

        Returns:
            [`~models.unet_1d.UNet1DOutput`] or `tuple`: [`~models.unet_1d.UNet1DOutput`] if `return_dict` is True,
            otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
        """

208
209
210
211
212
213
214
215
216
217
218
219
220
        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
            timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
        elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(sample.device)

        timestep_embed = self.time_proj(timesteps)
        if self.config.use_timestep_embedding:
            timestep_embed = self.time_mlp(timestep_embed)
        else:
            timestep_embed = timestep_embed[..., None]
            timestep_embed = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype)
221
            timestep_embed = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]))
222
223
224
225
226
227
228
229

        # 2. down
        down_block_res_samples = ()
        for downsample_block in self.down_blocks:
            sample, res_samples = downsample_block(hidden_states=sample, temb=timestep_embed)
            down_block_res_samples += res_samples

        # 3. mid
230
231
        if self.mid_block:
            sample = self.mid_block(sample, timestep_embed)
232
233
234
235
236

        # 4. up
        for i, upsample_block in enumerate(self.up_blocks):
            res_samples = down_block_res_samples[-1:]
            down_block_res_samples = down_block_res_samples[:-1]
237
238
239
240
241
            sample = upsample_block(sample, res_hidden_states_tuple=res_samples, temb=timestep_embed)

        # 5. post-process
        if self.out_block:
            sample = self.out_block(sample, timestep_embed)
242
243
244
245
246

        if not return_dict:
            return (sample,)

        return UNet1DOutput(sample=sample)