autoencoder_kl.py 17.3 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
15
from typing import Dict, Optional, Tuple, Union
16
17
18
19
20

import torch
import torch.nn as nn

from ..configuration_utils import ConfigMixin, register_to_config
21
from ..utils import BaseOutput, apply_forward_hook
22
from .attention_processor import AttentionProcessor, AttnProcessor
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder


@dataclass
class AutoencoderKLOutput(BaseOutput):
    """
    Output of AutoencoderKL encoding method.

    Args:
        latent_dist (`DiagonalGaussianDistribution`):
            Encoded outputs of `Encoder` represented as the mean and logvar of `DiagonalGaussianDistribution`.
            `DiagonalGaussianDistribution` allows for sampling latents from the distribution.
    """

    latent_dist: "DiagonalGaussianDistribution"


class AutoencoderKL(ModelMixin, ConfigMixin):
    r"""Variational Autoencoder (VAE) model with KL loss from the paper Auto-Encoding Variational Bayes by Diederik P. Kingma
    and Max Welling.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
    implements for all the model (such as downloading or saving, etc.)

    Parameters:
        in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
        out_channels (int,  *optional*, defaults to 3): Number of channels in the output.
        down_block_types (`Tuple[str]`, *optional*, defaults to :
            obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types.
        up_block_types (`Tuple[str]`, *optional*, defaults to :
            obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types.
        block_out_channels (`Tuple[int]`, *optional*, defaults to :
            obj:`(64,)`): Tuple of block output channels.
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
58
        latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
59
        sample_size (`int`, *optional*, defaults to `32`): TODO
60
61
62
63
64
65
66
        scaling_factor (`float`, *optional*, defaults to 0.18215):
            The component-wise standard deviation of the trained latent space computed using the first batch of the
            training set. This is used to scale the latent space to have unit variance when training the diffusion
            model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
            diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
            / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
            Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
67
68
    """

69
70
    _supports_gradient_checkpointing = True

71
72
73
74
75
76
77
78
79
80
81
82
83
    @register_to_config
    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
        down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
        up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
        block_out_channels: Tuple[int] = (64,),
        layers_per_block: int = 1,
        act_fn: str = "silu",
        latent_channels: int = 4,
        norm_num_groups: int = 32,
        sample_size: int = 32,
84
        scaling_factor: float = 0.18215,
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    ):
        super().__init__()

        # pass init params to Encoder
        self.encoder = Encoder(
            in_channels=in_channels,
            out_channels=latent_channels,
            down_block_types=down_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
            norm_num_groups=norm_num_groups,
            double_z=True,
        )

        # pass init params to Decoder
        self.decoder = Decoder(
            in_channels=latent_channels,
            out_channels=out_channels,
            up_block_types=up_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            norm_num_groups=norm_num_groups,
            act_fn=act_fn,
        )

        self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
        self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1)
113
114
115
116
117
118
119
120
121
122
123

        self.use_slicing = False
        self.use_tiling = False

        # only relevant if vae tiling is enabled
        self.tile_sample_min_size = self.config.sample_size
        sample_size = (
            self.config.sample_size[0]
            if isinstance(self.config.sample_size, (list, tuple))
            else self.config.sample_size
        )
124
        self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1)))
125
126
        self.tile_overlap_factor = 0.25

127
128
129
130
    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (Encoder, Decoder)):
            module.gradient_checkpointing = value

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    def enable_tiling(self, use_tiling: bool = True):
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful to save a large amount of memory and to allow
        the processing of larger images.
        """
        self.use_tiling = use_tiling

    def disable_tiling(self):
        r"""
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
        computing decoding in one step.
        """
        self.enable_tiling(False)

    def enable_slicing(self):
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.use_slicing = True

    def disable_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_slicing` was previously invoked, this method will go back to computing
        decoding in one step.
        """
158
159
        self.use_slicing = False

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    @property
    # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "set_processor"):
                processors[f"{name}.processor"] = module.processor

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""
        Parameters:
            `processor (`dict` of `AttentionProcessor` or `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                of **all** `Attention` layers.
            In case `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors.:

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
        self.set_attn_processor(AttnProcessor())

223
    @apply_forward_hook
224
    def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput:
225
226
227
        if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
            return self.tiled_encode(x, return_dict=return_dict)

228
229
230
231
232
233
234
235
236
237
        h = self.encoder(x)
        moments = self.quant_conv(h)
        posterior = DiagonalGaussianDistribution(moments)

        if not return_dict:
            return (posterior,)

        return AutoencoderKLOutput(latent_dist=posterior)

    def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
238
239
240
        if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
            return self.tiled_decode(z, return_dict=return_dict)

241
242
243
244
245
246
247
248
        z = self.post_quant_conv(z)
        dec = self.decoder(z)

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

249
    @apply_forward_hook
250
251
252
253
254
255
256
257
258
259
260
261
    def decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
        if self.use_slicing and z.shape[0] > 1:
            decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
            decoded = torch.cat(decoded_slices)
        else:
            decoded = self._decode(z).sample

        if not return_dict:
            return (decoded,)

        return DecoderOutput(sample=decoded)

262
    def blend_v(self, a, b, blend_extent):
263
264
        blend_extent = min(a.shape[2], b.shape[2], blend_extent)
        for y in range(blend_extent):
265
266
267
268
            b[:, :, y, :] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
        return b

    def blend_h(self, a, b, blend_extent):
269
270
        blend_extent = min(a.shape[3], b.shape[3], blend_extent)
        for x in range(blend_extent):
271
272
273
274
275
            b[:, :, :, x] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
        return b

    def tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput:
        r"""Encode a batch of images using a tiled encoder.
276

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
        Args:
        When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
        steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is:
        different from non-tiled encoding due to each tile using a different encoder. To avoid tiling artifacts, the
        tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
        look of the output, but they should be much less noticeable.
            x (`torch.FloatTensor`): Input batch of images. return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`AutoencoderKLOutput`] instead of a plain tuple.
        """
        overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
        blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
        row_limit = self.tile_latent_min_size - blend_extent

        # Split the image into 512x512 tiles and encode them separately.
        rows = []
        for i in range(0, x.shape[2], overlap_size):
            row = []
            for j in range(0, x.shape[3], overlap_size):
                tile = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
                tile = self.encoder(tile)
                tile = self.quant_conv(tile)
                row.append(tile)
            rows.append(row)
        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_extent)
                result_row.append(tile[:, :, :row_limit, :row_limit])
            result_rows.append(torch.cat(result_row, dim=3))

        moments = torch.cat(result_rows, dim=2)
        posterior = DiagonalGaussianDistribution(moments)

        if not return_dict:
            return (posterior,)

        return AutoencoderKLOutput(latent_dist=posterior)

    def tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
        r"""Decode a batch of images using a tiled decoder.
323

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
        Args:
        When this option is enabled, the VAE will split the input tensor into tiles to compute decoding in several
        steps. This is useful to keep memory use constant regardless of image size. The end result of tiled decoding is:
        different from non-tiled decoding due to each tile using a different decoder. To avoid tiling artifacts, the
        tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
        look of the output, but they should be much less noticeable.
            z (`torch.FloatTensor`): Input batch of latent vectors. return_dict (`bool`, *optional*, defaults to
            `True`):
                Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
        """
        overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))
        blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor)
        row_limit = self.tile_sample_min_size - blend_extent

        # Split z into overlapping 64x64 tiles and decode them separately.
        # The tiles have an overlap to avoid seams between tiles.
        rows = []
        for i in range(0, z.shape[2], overlap_size):
            row = []
            for j in range(0, z.shape[3], overlap_size):
                tile = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
                tile = self.post_quant_conv(tile)
                decoded = self.decoder(tile)
                row.append(decoded)
            rows.append(row)
        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_extent)
                result_row.append(tile[:, :, :row_limit, :row_limit])
            result_rows.append(torch.cat(result_row, dim=3))

        dec = torch.cat(result_rows, dim=2)
        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
    def forward(
        self,
        sample: torch.FloatTensor,
        sample_posterior: bool = False,
        return_dict: bool = True,
        generator: Optional[torch.Generator] = None,
    ) -> Union[DecoderOutput, torch.FloatTensor]:
        r"""
        Args:
            sample (`torch.FloatTensor`): Input sample.
            sample_posterior (`bool`, *optional*, defaults to `False`):
                Whether to sample from the posterior.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
        """
        x = sample
        posterior = self.encode(x).latent_dist
        if sample_posterior:
            z = posterior.sample(generator=generator)
        else:
            z = posterior.mode()
        dec = self.decode(z).sample

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)