pipeline_ddpm.py 2.12 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.


import torch

import tqdm
Patrick von Platen's avatar
Patrick von Platen committed
20
from ..pipeline_utils import DiffusionPipeline
Patrick von Platen's avatar
Patrick von Platen committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47


class DDPM(DiffusionPipeline):
    def __init__(self, unet, noise_scheduler):
        super().__init__()
        self.register_modules(unet=unet, noise_scheduler=noise_scheduler)

    def __call__(self, batch_size=1, generator=None, torch_device=None):
        if torch_device is None:
            torch_device = "cuda" if torch.cuda.is_available() else "cpu"

        self.unet.to(torch_device)

        # Sample gaussian noise to begin loop
        image = self.noise_scheduler.sample_noise(
            (batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution),
            device=torch_device,
            generator=generator,
        )

        num_prediction_steps = len(self.noise_scheduler)
        for t in tqdm.tqdm(reversed(range(num_prediction_steps)), total=num_prediction_steps):
            # 1. predict noise residual
            with torch.no_grad():
                residual = self.unet(image, t)

            # 2. predict previous mean of image x_t-1
Patrick von Platen's avatar
Patrick von Platen committed
48
            pred_prev_image = self.noise_scheduler.step(residual, image, t)
Patrick von Platen's avatar
Patrick von Platen committed
49
50
51
52
53
54
55
56
57
58
59

            # 3. optionally sample variance
            variance = 0
            if t > 0:
                noise = self.noise_scheduler.sample_noise(image.shape, device=image.device, generator=generator)
                variance = self.noise_scheduler.get_variance(t).sqrt() * noise

            # 4. set current image to prev_image: x_t -> x_t-1
            image = pred_prev_image + variance

        return image