modeling_unet.py 23 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.

# helpers functions

import copy
import math
from functools import partial
from inspect import isfunction
from pathlib import Path

import torch
import torch.nn.functional as F
from torch import einsum, nn
from torch.cuda.amp import GradScaler, autocast
from torch.optim import Adam
from torch.utils import data

from einops import rearrange
from PIL import Image
from torchvision import transforms, utils
from tqdm import tqdm

from ...modeling_utils import PreTrainedModel
from .configuration_unet import UNetConfig


# NOTE: the following file is completely copied from https://github.com/lucidrains/denoising-diffusion-pytorch/blob/master/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py





def exists(x):
    return x is not None


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


def cycle(dl):
    while True:
        for data_dl in dl:
            yield data_dl


def num_to_groups(num, divisor):
    groups = num // divisor
    remainder = num % divisor
    arr = [divisor] * groups
    if remainder > 0:
        arr.append(remainder)
    return arr


def normalize_to_neg_one_to_one(img):
    return img * 2 - 1


def unnormalize_to_zero_to_one(t):
    return (t + 1) * 0.5


# small helper modules


class EMA:
    def __init__(self, beta):
        super().__init__()
        self.beta = beta

    def update_model_average(self, ma_model, current_model):
        for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()):
            old_weight, up_weight = ma_params.data, current_params.data
            ma_params.data = self.update_average(old_weight, up_weight)

    def update_average(self, old, new):
        if old is None:
            return new
        return old * self.beta + (1 - self.beta) * new


class Residual(nn.Module):
    def __init__(self, fn):
        super().__init__()
        self.fn = fn

    def forward(self, x, *args, **kwargs):
        return self.fn(x, *args, **kwargs) + x


class SinusoidalPosEmb(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, x):
        device = x.device
        half_dim = self.dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
        emb = x[:, None] * emb[None, :]
        emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
        return emb


def Upsample(dim):
    return nn.ConvTranspose2d(dim, dim, 4, 2, 1)


def Downsample(dim):
    return nn.Conv2d(dim, dim, 4, 2, 1)


class LayerNorm(nn.Module):
    def __init__(self, dim, eps=1e-5):
        super().__init__()
        self.eps = eps
        self.g = nn.Parameter(torch.ones(1, dim, 1, 1))
        self.b = nn.Parameter(torch.zeros(1, dim, 1, 1))

    def forward(self, x):
        var = torch.var(x, dim=1, unbiased=False, keepdim=True)
        mean = torch.mean(x, dim=1, keepdim=True)
        return (x - mean) / (var + self.eps).sqrt() * self.g + self.b


class PreNorm(nn.Module):
    def __init__(self, dim, fn):
        super().__init__()
        self.fn = fn
        self.norm = LayerNorm(dim)

    def forward(self, x):
        x = self.norm(x)
        return self.fn(x)


# building block modules


class Block(nn.Module):
    def __init__(self, dim, dim_out, groups=8):
        super().__init__()
        self.proj = nn.Conv2d(dim, dim_out, 3, padding=1)
        self.norm = nn.GroupNorm(groups, dim_out)
        self.act = nn.SiLU()

    def forward(self, x, scale_shift=None):
        x = self.proj(x)
        x = self.norm(x)

        if exists(scale_shift):
            scale, shift = scale_shift
            x = x * (scale + 1) + shift

        x = self.act(x)
        return x


class ResnetBlock(nn.Module):
    def __init__(self, dim, dim_out, *, time_emb_dim=None, groups=8):
        super().__init__()
        self.mlp = nn.Sequential(nn.SiLU(), nn.Linear(time_emb_dim, dim_out * 2)) if exists(time_emb_dim) else None

        self.block1 = Block(dim, dim_out, groups=groups)
        self.block2 = Block(dim_out, dim_out, groups=groups)
        self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity()

    def forward(self, x, time_emb=None):

        scale_shift = None
        if exists(self.mlp) and exists(time_emb):
            time_emb = self.mlp(time_emb)
            time_emb = rearrange(time_emb, "b c -> b c 1 1")
            scale_shift = time_emb.chunk(2, dim=1)

        h = self.block1(x, scale_shift=scale_shift)

        h = self.block2(h)
        return h + self.res_conv(x)


class LinearAttention(nn.Module):
    def __init__(self, dim, heads=4, dim_head=32):
        super().__init__()
        self.scale = dim_head**-0.5
        self.heads = heads
        hidden_dim = dim_head * heads
        self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)

        self.to_out = nn.Sequential(nn.Conv2d(hidden_dim, dim, 1), LayerNorm(dim))

    def forward(self, x):
        b, c, h, w = x.shape
        qkv = self.to_qkv(x).chunk(3, dim=1)
        q, k, v = map(lambda t: rearrange(t, "b (h c) x y -> b h c (x y)", h=self.heads), qkv)

        q = q.softmax(dim=-2)
        k = k.softmax(dim=-1)

        q = q * self.scale
        context = torch.einsum("b h d n, b h e n -> b h d e", k, v)

        out = torch.einsum("b h d e, b h d n -> b h e n", context, q)
        out = rearrange(out, "b h c (x y) -> b (h c) x y", h=self.heads, x=h, y=w)
        return self.to_out(out)


class Attention(nn.Module):
    def __init__(self, dim, heads=4, dim_head=32):
        super().__init__()
        self.scale = dim_head**-0.5
        self.heads = heads
        hidden_dim = dim_head * heads
        self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
        self.to_out = nn.Conv2d(hidden_dim, dim, 1)

    def forward(self, x):
        b, c, h, w = x.shape
        qkv = self.to_qkv(x).chunk(3, dim=1)
        q, k, v = map(lambda t: rearrange(t, "b (h c) x y -> b h c (x y)", h=self.heads), qkv)
        q = q * self.scale

        sim = einsum("b h d i, b h d j -> b h i j", q, k)
        sim = sim - sim.amax(dim=-1, keepdim=True).detach()
        attn = sim.softmax(dim=-1)

        out = einsum("b h i j, b h d j -> b h i d", attn, v)
        out = rearrange(out, "b h (x y) d -> b (h d) x y", x=h, y=w)
        return self.to_out(out)


class UNetModel(PreTrainedModel):

    config_class = UNetConfig

    def __init__(self, config):
        super().__init__(config)

        init_dim = None
        out_dim = None
        channels = 3
        with_time_emb = True
        resnet_block_groups = 8
        learned_variance = False

        # determine dimensions

        dim_mults = config.dim_mults
        dim = config.dim
        self.channels = config.channels

        init_dim = default(init_dim, dim // 3 * 2)
        self.init_conv = nn.Conv2d(channels, init_dim, 7, padding=3)

        dims = [init_dim, *map(lambda m: dim * m, dim_mults)]
        in_out = list(zip(dims[:-1], dims[1:]))

        block_klass = partial(ResnetBlock, groups=resnet_block_groups)

        # time embeddings

        if with_time_emb:
            time_dim = dim * 4
            self.time_mlp = nn.Sequential(
                SinusoidalPosEmb(dim), nn.Linear(dim, time_dim), nn.GELU(), nn.Linear(time_dim, time_dim)
            )
        else:
            time_dim = None
            self.time_mlp = None

        # layers

        self.downs = nn.ModuleList([])
        self.ups = nn.ModuleList([])
        num_resolutions = len(in_out)

        for ind, (dim_in, dim_out) in enumerate(in_out):
            is_last = ind >= (num_resolutions - 1)

            self.downs.append(
                nn.ModuleList(
                    [
                        block_klass(dim_in, dim_out, time_emb_dim=time_dim),
                        block_klass(dim_out, dim_out, time_emb_dim=time_dim),
                        Residual(PreNorm(dim_out, LinearAttention(dim_out))),
                        Downsample(dim_out) if not is_last else nn.Identity(),
                    ]
                )
            )

        mid_dim = dims[-1]
        self.mid_block1 = block_klass(mid_dim, mid_dim, time_emb_dim=time_dim)
        self.mid_attn = Residual(PreNorm(mid_dim, Attention(mid_dim)))
        self.mid_block2 = block_klass(mid_dim, mid_dim, time_emb_dim=time_dim)

        for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
            is_last = ind >= (num_resolutions - 1)

            self.ups.append(
                nn.ModuleList(
                    [
                        block_klass(dim_out * 2, dim_in, time_emb_dim=time_dim),
                        block_klass(dim_in, dim_in, time_emb_dim=time_dim),
                        Residual(PreNorm(dim_in, LinearAttention(dim_in))),
                        Upsample(dim_in) if not is_last else nn.Identity(),
                    ]
                )
            )

        default_out_dim = channels * (1 if not learned_variance else 2)
        self.out_dim = default(out_dim, default_out_dim)

        self.final_conv = nn.Sequential(block_klass(dim, dim), nn.Conv2d(dim, self.out_dim, 1))

    def forward(self, x, time):
        x = self.init_conv(x)

        t = self.time_mlp(time) if exists(self.time_mlp) else None

        h = []

        for block1, block2, attn, downsample in self.downs:
            x = block1(x, t)
            x = block2(x, t)
            x = attn(x)
            h.append(x)
            x = downsample(x)

        x = self.mid_block1(x, t)
        x = self.mid_attn(x)
        x = self.mid_block2(x, t)

        for block1, block2, attn, upsample in self.ups:
            x = torch.cat((x, h.pop()), dim=1)
            x = block1(x, t)
            x = block2(x, t)
            x = attn(x)
            x = upsample(x)

        return self.final_conv(x)


# gaussian diffusion trainer class


def extract(a, t, x_shape):
    b, *_ = t.shape
    out = a.gather(-1, t)
    return out.reshape(b, *((1,) * (len(x_shape) - 1)))


def noise_like(shape, device, repeat=False):
    def repeat_noise():
        return torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))

    def noise():
        return torch.randn(shape, device=device)

    return repeat_noise() if repeat else noise()


def linear_beta_schedule(timesteps):
    scale = 1000 / timesteps
    beta_start = scale * 0.0001
    beta_end = scale * 0.02
    return torch.linspace(beta_start, beta_end, timesteps, dtype=torch.float64)


def cosine_beta_schedule(timesteps, s=0.008):
    """
    cosine schedule
    as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
    """
    steps = timesteps + 1
    x = torch.linspace(0, timesteps, steps, dtype=torch.float64)
    alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * torch.pi * 0.5) ** 2
    alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
    betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
    return torch.clip(betas, 0, 0.999)


class GaussianDiffusion(nn.Module):
    def __init__(
        self,
        denoise_fn,
        *,
        image_size,
        channels=3,
        timesteps=1000,
        loss_type="l1",
        objective="pred_noise",
        beta_schedule="cosine",
    ):
        super().__init__()
        assert not (type(self) == GaussianDiffusion and denoise_fn.channels != denoise_fn.out_dim)

        self.channels = channels
        self.image_size = image_size
        self.denoise_fn = denoise_fn
        self.objective = objective

        if beta_schedule == "linear":
            betas = linear_beta_schedule(timesteps)
        elif beta_schedule == "cosine":
            betas = cosine_beta_schedule(timesteps)
        else:
            raise ValueError(f"unknown beta schedule {beta_schedule}")

        alphas = 1.0 - betas
        alphas_cumprod = torch.cumprod(alphas, axis=0)
        alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value=1.0)

        (timesteps,) = betas.shape
        self.num_timesteps = int(timesteps)
        self.loss_type = loss_type

        # helper function to register buffer from float64 to float32

        def register_buffer(name, val):
            self.register_buffer(name, val.to(torch.float32))

        register_buffer("betas", betas)
        register_buffer("alphas_cumprod", alphas_cumprod)
        register_buffer("alphas_cumprod_prev", alphas_cumprod_prev)

        # calculations for diffusion q(x_t | x_{t-1}) and others

        register_buffer("sqrt_alphas_cumprod", torch.sqrt(alphas_cumprod))
        register_buffer("sqrt_one_minus_alphas_cumprod", torch.sqrt(1.0 - alphas_cumprod))
        register_buffer("log_one_minus_alphas_cumprod", torch.log(1.0 - alphas_cumprod))
        register_buffer("sqrt_recip_alphas_cumprod", torch.sqrt(1.0 / alphas_cumprod))
        register_buffer("sqrt_recipm1_alphas_cumprod", torch.sqrt(1.0 / alphas_cumprod - 1))

        # calculations for posterior q(x_{t-1} | x_t, x_0)

        posterior_variance = betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)

        # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)

        register_buffer("posterior_variance", posterior_variance)

        # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain

        register_buffer("posterior_log_variance_clipped", torch.log(posterior_variance.clamp(min=1e-20)))
        register_buffer("posterior_mean_coef1", betas * torch.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod))
        register_buffer(
            "posterior_mean_coef2", (1.0 - alphas_cumprod_prev) * torch.sqrt(alphas) / (1.0 - alphas_cumprod)
        )

    def predict_start_from_noise(self, x_t, t, noise):
        return (
            extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
            - extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
        )

    def q_posterior(self, x_start, x_t, t):
        posterior_mean = (
            extract(self.posterior_mean_coef1, t, x_t.shape) * x_start
            + extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
        )
        posterior_variance = extract(self.posterior_variance, t, x_t.shape)
        posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
        return posterior_mean, posterior_variance, posterior_log_variance_clipped

    def p_mean_variance(self, x, t, clip_denoised: bool):
        model_output = self.denoise_fn(x, t)

        if self.objective == "pred_noise":
            x_start = self.predict_start_from_noise(x, t=t, noise=model_output)
        elif self.objective == "pred_x0":
            x_start = model_output
        else:
            raise ValueError(f"unknown objective {self.objective}")

        if clip_denoised:
            x_start.clamp_(-1.0, 1.0)

        model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_start, x_t=x, t=t)
        return model_mean, posterior_variance, posterior_log_variance

    @torch.no_grad()
    def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
        b, *_, device = *x.shape, x.device
        model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
        noise = noise_like(x.shape, device, repeat_noise)
        # no noise when t == 0
        nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
        result = model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
        return result

    @torch.no_grad()
    def p_sample_loop(self, shape):
        device = self.betas.device

        b = shape[0]
        img = torch.randn(shape, device=device)

        for i in tqdm(
            reversed(range(0, self.num_timesteps)), desc="sampling loop time step", total=self.num_timesteps
        ):
            img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long))

        img = unnormalize_to_zero_to_one(img)
        return img

    @torch.no_grad()
    def sample(self, batch_size=16):
        image_size = self.image_size
        channels = self.channels
        return self.p_sample_loop((batch_size, channels, image_size, image_size))

    @torch.no_grad()
    def interpolate(self, x1, x2, t=None, lam=0.5):
        b, *_, device = *x1.shape, x1.device
        t = default(t, self.num_timesteps - 1)

        assert x1.shape == x2.shape

        t_batched = torch.stack([torch.tensor(t, device=device)] * b)
        xt1, xt2 = map(lambda x: self.q_sample(x, t=t_batched), (x1, x2))

        img = (1 - lam) * xt1 + lam * xt2
        for i in tqdm(reversed(range(0, t)), desc="interpolation sample time step", total=t):
            img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long))

        return img

    def q_sample(self, x_start, t, noise=None):
        noise = default(noise, lambda: torch.randn_like(x_start))

        return (
            extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
            + extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
        )

    @property
    def loss_fn(self):
        if self.loss_type == "l1":
            return F.l1_loss
        elif self.loss_type == "l2":
            return F.mse_loss
        else:
            raise ValueError(f"invalid loss type {self.loss_type}")

    def p_losses(self, x_start, t, noise=None):
        b, c, h, w = x_start.shape
        noise = default(noise, lambda: torch.randn_like(x_start))

        x = self.q_sample(x_start=x_start, t=t, noise=noise)
        model_out = self.denoise_fn(x, t)

        if self.objective == "pred_noise":
            target = noise
        elif self.objective == "pred_x0":
            target = x_start
        else:
            raise ValueError(f"unknown objective {self.objective}")

        loss = self.loss_fn(model_out, target)
        return loss

    def forward(self, img, *args, **kwargs):
        b, _, h, w, device, img_size, = (
            *img.shape,
            img.device,
            self.image_size,
        )
        assert h == img_size and w == img_size, f"height and width of image must be {img_size}"
        t = torch.randint(0, self.num_timesteps, (b,), device=device).long()

        img = normalize_to_neg_one_to_one(img)
        return self.p_losses(img, t, *args, **kwargs)


# dataset classes


class Dataset(data.Dataset):
    def __init__(self, folder, image_size, exts=["jpg", "jpeg", "png"]):
        super().__init__()
        self.folder = folder
        self.image_size = image_size
        self.paths = [p for ext in exts for p in Path(f"{folder}").glob(f"**/*.{ext}")]

        self.transform = transforms.Compose(
            [
                transforms.Resize(image_size),
                transforms.RandomHorizontalFlip(),
                transforms.CenterCrop(image_size),
                transforms.ToTensor(),
            ]
        )

    def __len__(self):
        return len(self.paths)

    def __getitem__(self, index):
        path = self.paths[index]
        img = Image.open(path)
        return self.transform(img)


# trainer class


class Trainer(object):
    def __init__(
        self,
        diffusion_model,
        folder,
        *,
        ema_decay=0.995,
        image_size=128,
        train_batch_size=32,
        train_lr=1e-4,
        train_num_steps=100000,
        gradient_accumulate_every=2,
        amp=False,
        step_start_ema=2000,
        update_ema_every=10,
        save_and_sample_every=1000,
        results_folder="./results",
    ):
        super().__init__()
        self.model = diffusion_model
        self.ema = EMA(ema_decay)
        self.ema_model = copy.deepcopy(self.model)
        self.update_ema_every = update_ema_every

        self.step_start_ema = step_start_ema
        self.save_and_sample_every = save_and_sample_every

        self.batch_size = train_batch_size
        self.image_size = diffusion_model.image_size
        self.gradient_accumulate_every = gradient_accumulate_every
        self.train_num_steps = train_num_steps

        self.ds = Dataset(folder, image_size)
        self.dl = cycle(data.DataLoader(self.ds, batch_size=train_batch_size, shuffle=True, pin_memory=True))
        self.opt = Adam(diffusion_model.parameters(), lr=train_lr)

        self.step = 0

        self.amp = amp
        self.scaler = GradScaler(enabled=amp)

        self.results_folder = Path(results_folder)
        self.results_folder.mkdir(exist_ok=True)

        self.reset_parameters()

    def reset_parameters(self):
        self.ema_model.load_state_dict(self.model.state_dict())

    def step_ema(self):
        if self.step < self.step_start_ema:
            self.reset_parameters()
            return
        self.ema.update_model_average(self.ema_model, self.model)

    def save(self, milestone):
        data = {
            "step": self.step,
            "model": self.model.state_dict(),
            "ema": self.ema_model.state_dict(),
            "scaler": self.scaler.state_dict(),
        }
        torch.save(data, str(self.results_folder / f"model-{milestone}.pt"))

    def load(self, milestone):
        data = torch.load(str(self.results_folder / f"model-{milestone}.pt"))

        self.step = data["step"]
        self.model.load_state_dict(data["model"])
        self.ema_model.load_state_dict(data["ema"])
        self.scaler.load_state_dict(data["scaler"])

    def train(self):
        with tqdm(initial=self.step, total=self.train_num_steps) as pbar:

            while self.step < self.train_num_steps:
                for i in range(self.gradient_accumulate_every):
                    data = next(self.dl).cuda()

                    with autocast(enabled=self.amp):
                        loss = self.model(data)
                        self.scaler.scale(loss / self.gradient_accumulate_every).backward()

                    pbar.set_description(f"loss: {loss.item():.4f}")

                self.scaler.step(self.opt)
                self.scaler.update()
                self.opt.zero_grad()

                if self.step % self.update_ema_every == 0:
                    self.step_ema()

                if self.step != 0 and self.step % self.save_and_sample_every == 0:
                    self.ema_model.eval()

                    milestone = self.step // self.save_and_sample_every
                    batches = num_to_groups(36, self.batch_size)
                    all_images_list = list(map(lambda n: self.ema_model.sample(batch_size=n), batches))
                    all_images = torch.cat(all_images_list, dim=0)
                    utils.save_image(all_images, str(self.results_folder / f"sample-{milestone}.png"), nrow=6)
                    self.save(milestone)

                self.step += 1
                pbar.update(1)

        print("training complete")