configuration_utils.py 21.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Configuration base class and utilities."""


import copy
import json
import os
import re
from typing import Any, Dict, Tuple, Union

from requests import HTTPError
from transformers.utils import (
    CONFIG_NAME,
    HUGGINGFACE_CO_RESOLVE_ENDPOINT,
    EntryNotFoundError,
    RepositoryNotFoundError,
    RevisionNotFoundError,
    cached_path,
    hf_bucket_url,
    is_offline_mode,
    is_remote_url,
    logging,
)

from . import __version__


logger = logging.get_logger(__name__)

_re_configuration_file = re.compile(r"config\.(.*)\.json")


class PretrainedConfig:
    r"""
    Base class for all configuration classes. Handles a few parameters common to all models' configurations as well as
    methods for loading/downloading/saving configurations.

    """
    model_type: str = ""

    def __init__(self, **kwargs):
        # Name or path to the pretrained checkpoint
        self._name_or_path = str(kwargs.pop("name_or_path", ""))

        # Drop the diffusers version info
        self.diffusers_version = kwargs.pop("diffusers_version", None)

    @property
    def name_or_path(self) -> str:
        return getattr(self, "_name_or_path", None)

    @name_or_path.setter
    def name_or_path(self, value):
        self._name_or_path = str(value)  # Make sure that name_or_path is a string (for JSON encoding)

    def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
        """
        Save a configuration object to the directory `save_directory`, so that it can be re-loaded using the
        [`~PretrainedConfig.from_pretrained`] class method.

        Args:
            save_directory (`str` or `os.PathLike`):
                Directory where the configuration JSON file will be saved (will be created if it does not exist).
            kwargs:
                Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
        """
        if os.path.isfile(save_directory):
            raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")

        os.makedirs(save_directory, exist_ok=True)

        # If we save using the predefined names, we can load using `from_pretrained`
        output_config_file = os.path.join(save_directory, CONFIG_NAME)

        self.to_json_file(output_config_file, use_diff=True)
        logger.info(f"Configuration saved in {output_config_file}")

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
        r"""
        Instantiate a [`PretrainedConfig`] (or a derived class) from a pretrained model configuration.

        Args:
            pretrained_model_name_or_path (`str` or `os.PathLike`):
                This can be either:

                - a string, the *model id* of a pretrained model configuration hosted inside a model repo on
                  huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or
                  namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`.
                - a path to a *directory* containing a configuration file saved using the
                  [`~PretrainedConfig.save_pretrained`] method, e.g., `./my_model_directory/`.
                - a path or url to a saved configuration JSON *file*, e.g., `./my_model_directory/configuration.json`.
            cache_dir (`str` or `os.PathLike`, *optional*):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force to (re-)download the configuration files and override the cached versions if
                they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received file. Attempts to resume the download if such a file
                exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `diffusers-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
            return_unused_kwargs (`bool`, *optional*, defaults to `False`):
                If `False`, then this function returns just the final configuration object.

                If `True`, then this functions returns a `Tuple(config, unused_kwargs)` where *unused_kwargs* is a
                dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e., the
                part of `kwargs` which has not been used to update `config` and is otherwise ignored.
            kwargs (`Dict[str, Any]`, *optional*):
                The values in kwargs of any keys which are configuration attributes will be used to override the loaded
                values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled
                by the `return_unused_kwargs` keyword parameter.

        <Tip>

        Passing `use_auth_token=True` is required when you want to use a private model.

        </Tip>

        Returns:
            [`PretrainedConfig`]: The configuration object instantiated from this pretrained model.

        Examples:

        ```python
        # We can't instantiate directly the base class *PretrainedConfig* so let's show the examples on a
        # derived class: BertConfig
        config = BertConfig.from_pretrained(
            "bert-base-uncased"
        )  # Download configuration from huggingface.co and cache.
        config = BertConfig.from_pretrained(
            "./test/saved_model/"
        )  # E.g. config (or model) was saved using *save_pretrained('./test/saved_model/')*
        config = BertConfig.from_pretrained("./test/saved_model/my_configuration.json")
        config = BertConfig.from_pretrained("bert-base-uncased", output_attentions=True, foo=False)
        assert config.output_attentions == True
        config, unused_kwargs = BertConfig.from_pretrained(
            "bert-base-uncased", output_attentions=True, foo=False, return_unused_kwargs=True
        )
        assert config.output_attentions == True
        assert unused_kwargs == {"foo": False}
        ```"""
        config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
        if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
            logger.warning(
                f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
                f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
            )

        return cls.from_dict(config_dict, **kwargs)

    @classmethod
    def get_config_dict(
        cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
    ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
        """
        From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used for instantiating a
        [`PretrainedConfig`] using `from_dict`.

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`):
                The identifier of the pre-trained checkpoint from which we want the dictionary of parameters.

        Returns:
            `Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the configuration object.

        """
        # Get config dict associated with the base config file
        config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs)

        return config_dict, kwargs

    @classmethod
    def _get_config_dict(
        cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
    ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        use_auth_token = kwargs.pop("use_auth_token", None)
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)

        user_agent = {"file_type": "config"}

        if is_offline_mode() and not local_files_only:
            logger.info("Offline mode: forcing local_files_only=True")
            local_files_only = True

        pretrained_model_name_or_path = str(pretrained_model_name_or_path)
        if os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
            config_file = pretrained_model_name_or_path
        else:
            configuration_file = kwargs.pop("_configuration_file", CONFIG_NAME)

            if os.path.isdir(pretrained_model_name_or_path):
                config_file = os.path.join(pretrained_model_name_or_path, configuration_file)
            else:
                config_file = hf_bucket_url(
                    pretrained_model_name_or_path, filename=configuration_file, revision=revision, mirror=None
                )

        try:
            # Load from URL or cache if already cached
            resolved_config_file = cached_path(
                config_file,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                resume_download=resume_download,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                user_agent=user_agent,
            )

        except RepositoryNotFoundError:
            raise EnvironmentError(
                f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier listed on "
                "'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a token having "
                "permission to this repo with `use_auth_token` or log in with `huggingface-cli login` and pass "
                "`use_auth_token=True`."
            )
        except RevisionNotFoundError:
            raise EnvironmentError(
                f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for this "
                f"model name. Check the model page at 'https://huggingface.co/{pretrained_model_name_or_path}' for "
                "available revisions."
            )
        except EntryNotFoundError:
            raise EnvironmentError(
                f"{pretrained_model_name_or_path} does not appear to have a file named {configuration_file}."
            )
        except HTTPError as err:
            raise EnvironmentError(
                f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}"
            )
        except ValueError:
            raise EnvironmentError(
                f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it in"
                f" the cached files and it looks like {pretrained_model_name_or_path} is not the path to a directory"
                f" containing a {configuration_file} file.\nCheckout your internet connection or see how to run the"
                " library in offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
            )
        except EnvironmentError:
            raise EnvironmentError(
                f"Can't load config for '{pretrained_model_name_or_path}'. If you were trying to load it from "
                "'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
                f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
                f"containing a {configuration_file} file"
            )

        try:
            # Load config dict
            config_dict = cls._dict_from_json_file(resolved_config_file)
        except (json.JSONDecodeError, UnicodeDecodeError):
            raise EnvironmentError(
                f"It looks like the config file at '{resolved_config_file}' is not a valid JSON file."
            )

        if resolved_config_file == config_file:
            logger.info(f"loading configuration file {config_file}")
        else:
            logger.info(f"loading configuration file {config_file} from cache at {resolved_config_file}")

        return config_dict, kwargs

    @classmethod
    def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "PretrainedConfig":
        """
        Instantiates a [`PretrainedConfig`] from a Python dictionary of parameters.

        Args:
            config_dict (`Dict[str, Any]`):
                Dictionary that will be used to instantiate the configuration object. Such a dictionary can be
                retrieved from a pretrained checkpoint by leveraging the [`~PretrainedConfig.get_config_dict`] method.
            kwargs (`Dict[str, Any]`):
                Additional parameters from which to initialize the configuration object.

        Returns:
            [`PretrainedConfig`]: The configuration object instantiated from those parameters.
        """
        return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
        # Those arguments may be passed along for our internal telemetry.
        # We remove them so they don't appear in `return_unused_kwargs`.

        config = cls(**config_dict)

        to_remove = []
        for key, value in kwargs.items():
            if hasattr(config, key):
                setattr(config, key, value)
                to_remove.append(key)
        for key in to_remove:
            kwargs.pop(key, None)

        logger.info(f"Model config {config}")
        if return_unused_kwargs:
            return config, kwargs
        else:
            return config

    @classmethod
    def from_json_file(cls, json_file: Union[str, os.PathLike]) -> "PretrainedConfig":
        """
        Instantiates a [`PretrainedConfig`] from the path to a JSON file of parameters.

        Args:
            json_file (`str` or `os.PathLike`):
                Path to the JSON file containing the parameters.

        Returns:
            [`PretrainedConfig`]: The configuration object instantiated from that JSON file.

        """
        config_dict = cls._dict_from_json_file(json_file)
        return cls(**config_dict)

    @classmethod
    def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
        with open(json_file, "r", encoding="utf-8") as reader:
            text = reader.read()
        return json.loads(text)

    def __eq__(self, other):
        return self.__dict__ == other.__dict__

    def __repr__(self):
        return f"{self.__class__.__name__} {self.to_json_string()}"

    def to_diff_dict(self) -> Dict[str, Any]:
        """
        Removes all attributes from config which correspond to the default config attributes for better readability and
        serializes to a Python dictionary.

        Returns:
            `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance,
        """
        config_dict = self.to_dict()

        # get the default config dict
        default_config_dict = PretrainedConfig().to_dict()

        # get class specific config dict
        class_config_dict = self.__class__().to_dict()

        serializable_config_dict = {}

        # only serialize values that differ from the default config
        for key, value in config_dict.items():
            if (
                key not in default_config_dict
                or key == "diffusers_version"
                or value != default_config_dict[key]
                or (key in class_config_dict and value != class_config_dict[key])
            ):
                serializable_config_dict[key] = value

        self.dict_torch_dtype_to_str(serializable_config_dict)

        return serializable_config_dict

    def to_dict(self) -> Dict[str, Any]:
        """
        Serializes this instance to a Python dictionary.

        Returns:
            `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
        """
        output = copy.deepcopy(self.__dict__)
        if hasattr(self.__class__, "model_type"):
            output["model_type"] = self.__class__.model_type
        if "_auto_class" in output:
            del output["_auto_class"]

        # Transformers version when serializing the model
        output["diffusers_version"] = __version__

        self.dict_torch_dtype_to_str(output)

        return output

    def to_json_string(self, use_diff: bool = True) -> str:
        """
        Serializes this instance to a JSON string.

        Args:
            use_diff (`bool`, *optional*, defaults to `True`):
                If set to `True`, only the difference between the config instance and the default `PretrainedConfig()`
                is serialized to JSON string.

        Returns:
            `str`: String containing all the attributes that make up this configuration instance in JSON format.
        """
        if use_diff is True:
            config_dict = self.to_diff_dict()
        else:
            config_dict = self.to_dict()
        return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"

    def to_json_file(self, json_file_path: Union[str, os.PathLike], use_diff: bool = True):
        """
        Save this instance to a JSON file.

        Args:
            json_file_path (`str` or `os.PathLike`):
                Path to the JSON file in which this configuration instance's parameters will be saved.
            use_diff (`bool`, *optional*, defaults to `True`):
                If set to `True`, only the difference between the config instance and the default `PretrainedConfig()`
                is serialized to JSON file.
        """
        with open(json_file_path, "w", encoding="utf-8") as writer:
            writer.write(self.to_json_string(use_diff=use_diff))

    def update(self, config_dict: Dict[str, Any]):
        """
        Updates attributes of this class with attributes from `config_dict`.

        Args:
            config_dict (`Dict[str, Any]`): Dictionary of attributes that should be updated for this class.
        """
        for key, value in config_dict.items():
            setattr(self, key, value)

    def update_from_string(self, update_str: str):
        """
        Updates attributes of this class with attributes from `update_str`.

        The expected format is ints, floats and strings as is, and for booleans use `true` or `false`. For example:
        "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"

        The keys to change have to already exist in the config object.

        Args:
            update_str (`str`): String with attributes that should be updated for this class.

        """

        d = dict(x.split("=") for x in update_str.split(","))
        for k, v in d.items():
            if not hasattr(self, k):
                raise ValueError(f"key {k} isn't in the original config dict")

            old_v = getattr(self, k)
            if isinstance(old_v, bool):
                if v.lower() in ["true", "1", "y", "yes"]:
                    v = True
                elif v.lower() in ["false", "0", "n", "no"]:
                    v = False
                else:
                    raise ValueError(f"can't derive true or false from {v} (key {k})")
            elif isinstance(old_v, int):
                v = int(v)
            elif isinstance(old_v, float):
                v = float(v)
            elif not isinstance(old_v, str):
                raise ValueError(
                    f"You can only update int, float, bool or string values in the config, got {v} for key {k}"
                )

            setattr(self, k, v)

    def dict_torch_dtype_to_str(self, d: Dict[str, Any]) -> None:
        """
        Checks whether the passed dictionary and its nested dicts have a *torch_dtype* key and if it's not None,
        converts torch.dtype to a string of just the type. For example, `torch.float32` get converted into *"float32"*
        string, which can then be stored in the json format.
        """
        if d.get("torch_dtype", None) is not None and not isinstance(d["torch_dtype"], str):
            d["torch_dtype"] = str(d["torch_dtype"]).split(".")[1]
        for value in d.values():
            if isinstance(value, dict):
                self.dict_torch_dtype_to_str(value)