train_dreambooth.py 41.8 KB
Newer Older
1
2
#!/usr/bin/env python
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
3
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

16
import argparse
17
import hashlib
18
import itertools
Suraj Patil's avatar
Suraj Patil committed
19
import logging
20
21
import math
import os
22
import warnings
23
24
from pathlib import Path

25
import accelerate
26
import numpy as np
27
28
29
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
Suraj Patil's avatar
Suraj Patil committed
30
import transformers
31
32
from accelerate import Accelerator
from accelerate.logging import get_logger
33
from accelerate.utils import ProjectConfiguration, set_seed
34
from huggingface_hub import create_repo, upload_folder
35
from packaging import version
36
from PIL import Image
37
from torch.utils.data import Dataset
38
39
from torchvision import transforms
from tqdm.auto import tqdm
40
from transformers import AutoTokenizer, PretrainedConfig
41

42
import diffusers
43
44
45
46
47
48
49
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    DiffusionPipeline,
    DPMSolverMultistepScheduler,
    UNet2DConditionModel,
)
50
from diffusers.optimization import get_scheduler
51
from diffusers.utils import check_min_version, is_wandb_available
52
53
from diffusers.utils.import_utils import is_xformers_available

54

55
56
57
if is_wandb_available():
    import wandb

58
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
Patrick von Platen's avatar
Patrick von Platen committed
59
check_min_version("0.15.0")
60

61
62
63
logger = get_logger(__name__)


64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
def log_validation(text_encoder, tokenizer, unet, vae, args, accelerator, weight_dtype, epoch):
    logger.info(
        f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
        f" {args.validation_prompt}."
    )
    # create pipeline (note: unet and vae are loaded again in float32)
    pipeline = DiffusionPipeline.from_pretrained(
        args.pretrained_model_name_or_path,
        text_encoder=accelerator.unwrap_model(text_encoder),
        tokenizer=tokenizer,
        unet=accelerator.unwrap_model(unet),
        vae=vae,
        revision=args.revision,
        torch_dtype=weight_dtype,
    )
    pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
    pipeline = pipeline.to(accelerator.device)
    pipeline.set_progress_bar_config(disable=True)

    # run inference
    generator = None if args.seed is None else torch.Generator(device=accelerator.device).manual_seed(args.seed)
    images = []
    for _ in range(args.num_validation_images):
        with torch.autocast("cuda"):
            image = pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0]
        images.append(image)

    for tracker in accelerator.trackers:
        if tracker.name == "tensorboard":
            np_images = np.stack([np.asarray(img) for img in images])
            tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
        if tracker.name == "wandb":
            tracker.log(
                {
                    "validation": [
                        wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images)
                    ]
                }
            )

    del pipeline
    torch.cuda.empty_cache()


108
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
109
110
111
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="text_encoder",
112
        revision=revision,
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
    )
    model_class = text_encoder_config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "RobertaSeriesModelWithTransformation":
        from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation

        return RobertaSeriesModelWithTransformation
    else:
        raise ValueError(f"{model_class} is not supported.")


Suraj Patil's avatar
Suraj Patil committed
128
def parse_args(input_args=None):
129
130
131
132
133
134
135
136
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
137
138
139
140
141
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
142
143
144
145
        help=(
            "Revision of pretrained model identifier from huggingface.co/models. Trainable model components should be"
            " float32 precision."
        ),
146
    )
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--instance_data_dir",
        type=str,
        default=None,
        required=True,
        help="A folder containing the training data of instance images.",
    )
    parser.add_argument(
        "--class_data_dir",
        type=str,
        default=None,
        required=False,
        help="A folder containing the training data of class images.",
    )
    parser.add_argument(
        "--instance_prompt",
        type=str,
        default=None,
171
        required=True,
Yuta Hayashibe's avatar
Yuta Hayashibe committed
172
        help="The prompt with identifier specifying the instance",
173
174
175
176
177
    )
    parser.add_argument(
        "--class_prompt",
        type=str,
        default=None,
Yuta Hayashibe's avatar
Yuta Hayashibe committed
178
        help="The prompt to specify images in the same class as provided instance images.",
179
180
181
182
183
    )
    parser.add_argument(
        "--with_prior_preservation",
        default=False,
        action="store_true",
Yuta Hayashibe's avatar
Yuta Hayashibe committed
184
        help="Flag to add prior preservation loss.",
185
186
187
188
189
190
191
    )
    parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
    parser.add_argument(
        "--num_class_images",
        type=int,
        default=100,
        help=(
192
193
            "Minimal class images for prior preservation loss. If there are not enough images already present in"
            " class_data_dir, additional images will be sampled with class_prompt."
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="text-inversion-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
213
214
215
        "--center_crop",
        default=False,
        action="store_true",
patil-suraj's avatar
patil-suraj committed
216
217
218
219
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
220
    )
221
222
223
224
225
    parser.add_argument(
        "--train_text_encoder",
        action="store_true",
        help="Whether to train the text encoder. If set, the text encoder should be float32 precision.",
    )
226
227
228
229
230
231
232
233
234
235
236
237
238
    parser.add_argument(
        "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
        "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
239
240
241
242
243
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
244
245
246
247
248
            "Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
            "In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
            "Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
            "See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
            "instructions."
249
250
        ),
    )
251
    parser.add_argument(
252
        "--checkpoints_total_limit",
253
254
255
256
257
258
259
260
        type=int,
        default=None,
        help=(
            "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
            " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
            " for more details"
        ),
    )
261
262
263
264
265
266
267
268
269
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=5e-6,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
305
306
307
308
309
310
311
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
    parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
312
313
314
    parser.add_argument(
        "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )
315
316
317
318
319
320
321
322
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
Suraj Patil's avatar
Suraj Patil committed
345
346
347
348
349
350
351
352
353
354
355
356
357
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
358
359
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
Suraj Patil's avatar
Suraj Patil committed
360
361
        ),
    )
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
    parser.add_argument(
        "--validation_prompt",
        type=str,
        default=None,
        help="A prompt that is used during validation to verify that the model is learning.",
    )
    parser.add_argument(
        "--num_validation_images",
        type=int,
        default=4,
        help="Number of images that should be generated during validation with `validation_prompt`.",
    )
    parser.add_argument(
        "--validation_steps",
        type=int,
        default=100,
        help=(
            "Run validation every X steps. Validation consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`"
            " and logging the images."
        ),
    )
384
385
386
    parser.add_argument(
        "--mixed_precision",
        type=str,
387
        default=None,
388
389
        choices=["no", "fp16", "bf16"],
        help=(
390
391
392
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
393
394
        ),
    )
395
396
397
398
399
400
401
402
403
404
    parser.add_argument(
        "--prior_generation_precision",
        type=str,
        default=None,
        choices=["no", "fp32", "fp16", "bf16"],
        help=(
            "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to  fp16 if a GPU is available else fp32."
        ),
    )
405
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
406
407
408
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
409
410
411
412
413
414
415
416
417
    parser.add_argument(
        "--set_grads_to_none",
        action="store_true",
        help=(
            "Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain"
            " behaviors, so disable this argument if it causes any problems. More info:"
            " https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html"
        ),
    )
418

419
420
421
422
423
424
425
426
427
428
    parser.add_argument(
        "--offset_noise",
        action="store_true",
        default=False,
        help=(
            "Fine-tuning against a modified noise"
            " See: https://www.crosslabs.org//blog/diffusion-with-offset-noise for more information."
        ),
    )

429
430
431
432
433
    if input_args is not None:
        args = parser.parse_args(input_args)
    else:
        args = parser.parse_args()

434
435
436
437
438
439
440
441
442
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.with_prior_preservation:
        if args.class_data_dir is None:
            raise ValueError("You must specify a data directory for class images.")
        if args.class_prompt is None:
            raise ValueError("You must specify prompt for class images.")
443
    else:
444
        # logger is not available yet
445
        if args.class_data_dir is not None:
446
            warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
447
        if args.class_prompt is not None:
448
            warnings.warn("You need not use --class_prompt without --with_prior_preservation.")
449
450
451
452
453
454

    return args


class DreamBoothDataset(Dataset):
    """
Yuta Hayashibe's avatar
Yuta Hayashibe committed
455
    A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
456
457
458
459
460
461
462
463
464
465
    It pre-processes the images and the tokenizes prompts.
    """

    def __init__(
        self,
        instance_data_root,
        instance_prompt,
        tokenizer,
        class_data_root=None,
        class_prompt=None,
466
        class_num=None,
467
468
469
470
471
472
473
474
475
        size=512,
        center_crop=False,
    ):
        self.size = size
        self.center_crop = center_crop
        self.tokenizer = tokenizer

        self.instance_data_root = Path(instance_data_root)
        if not self.instance_data_root.exists():
476
            raise ValueError(f"Instance {self.instance_data_root} images root doesn't exists.")
477
478
479
480
481
482
483
484
485

        self.instance_images_path = list(Path(instance_data_root).iterdir())
        self.num_instance_images = len(self.instance_images_path)
        self.instance_prompt = instance_prompt
        self._length = self.num_instance_images

        if class_data_root is not None:
            self.class_data_root = Path(class_data_root)
            self.class_data_root.mkdir(parents=True, exist_ok=True)
486
            self.class_images_path = list(self.class_data_root.iterdir())
487
488
489
490
            if class_num is not None:
                self.num_class_images = min(len(self.class_images_path), class_num)
            else:
                self.num_class_images = len(self.class_images_path)
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
            self._length = max(self.num_class_images, self.num_instance_images)
            self.class_prompt = class_prompt
        else:
            self.class_data_root = None

        self.image_transforms = transforms.Compose(
            [
                transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
                transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
        )

    def __len__(self):
        return self._length

    def __getitem__(self, index):
        example = {}
        instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
        if not instance_image.mode == "RGB":
            instance_image = instance_image.convert("RGB")
        example["instance_images"] = self.image_transforms(instance_image)
        example["instance_prompt_ids"] = self.tokenizer(
            self.instance_prompt,
            truncation=True,
517
            padding="max_length",
518
            max_length=self.tokenizer.model_max_length,
519
            return_tensors="pt",
520
521
522
523
524
525
526
527
528
529
        ).input_ids

        if self.class_data_root:
            class_image = Image.open(self.class_images_path[index % self.num_class_images])
            if not class_image.mode == "RGB":
                class_image = class_image.convert("RGB")
            example["class_images"] = self.image_transforms(class_image)
            example["class_prompt_ids"] = self.tokenizer(
                self.class_prompt,
                truncation=True,
530
                padding="max_length",
531
                max_length=self.tokenizer.model_max_length,
532
                return_tensors="pt",
533
534
535
536
537
            ).input_ids

        return example


538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
def collate_fn(examples, with_prior_preservation=False):
    input_ids = [example["instance_prompt_ids"] for example in examples]
    pixel_values = [example["instance_images"] for example in examples]

    # Concat class and instance examples for prior preservation.
    # We do this to avoid doing two forward passes.
    if with_prior_preservation:
        input_ids += [example["class_prompt_ids"] for example in examples]
        pixel_values += [example["class_images"] for example in examples]

    pixel_values = torch.stack(pixel_values)
    pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()

    input_ids = torch.cat(input_ids, dim=0)

    batch = {
        "input_ids": input_ids,
        "pixel_values": pixel_values,
    }
    return batch


560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
class PromptDataset(Dataset):
    "A simple dataset to prepare the prompts to generate class images on multiple GPUs."

    def __init__(self, prompt, num_samples):
        self.prompt = prompt
        self.num_samples = num_samples

    def __len__(self):
        return self.num_samples

    def __getitem__(self, index):
        example = {}
        example["prompt"] = self.prompt
        example["index"] = index
        return example


577
def main(args):
578
579
    logging_dir = Path(args.output_dir, args.logging_dir)

580
    accelerator_project_config = ProjectConfiguration(total_limit=args.checkpoints_total_limit)
581

582
583
584
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
Suraj Patil's avatar
Suraj Patil committed
585
        log_with=args.report_to,
586
        logging_dir=logging_dir,
587
        project_config=accelerator_project_config,
588
589
    )

590
591
592
593
    if args.report_to == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")

594
595
596
597
598
599
600
601
602
    # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
    # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
    # TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
    if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
        raise ValueError(
            "Gradient accumulation is not supported when training the text encoder in distributed training. "
            "Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
        )

Suraj Patil's avatar
Suraj Patil committed
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
618
619
620
    if args.seed is not None:
        set_seed(args.seed)

Suraj Patil's avatar
Suraj Patil committed
621
    # Generate class images if prior preservation is enabled.
622
623
624
625
626
627
628
629
    if args.with_prior_preservation:
        class_images_dir = Path(args.class_data_dir)
        if not class_images_dir.exists():
            class_images_dir.mkdir(parents=True)
        cur_class_images = len(list(class_images_dir.iterdir()))

        if cur_class_images < args.num_class_images:
            torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
630
631
632
633
634
635
            if args.prior_generation_precision == "fp32":
                torch_dtype = torch.float32
            elif args.prior_generation_precision == "fp16":
                torch_dtype = torch.float16
            elif args.prior_generation_precision == "bf16":
                torch_dtype = torch.bfloat16
636
            pipeline = DiffusionPipeline.from_pretrained(
637
638
639
640
                args.pretrained_model_name_or_path,
                torch_dtype=torch_dtype,
                safety_checker=None,
                revision=args.revision,
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
            )
            pipeline.set_progress_bar_config(disable=True)

            num_new_images = args.num_class_images - cur_class_images
            logger.info(f"Number of class images to sample: {num_new_images}.")

            sample_dataset = PromptDataset(args.class_prompt, num_new_images)
            sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)

            sample_dataloader = accelerator.prepare(sample_dataloader)
            pipeline.to(accelerator.device)

            for example in tqdm(
                sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
            ):
656
                images = pipeline(example["prompt"]).images
657
658

                for i, image in enumerate(images):
659
660
661
                    hash_image = hashlib.sha1(image.tobytes()).hexdigest()
                    image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
                    image.save(image_filename)
662
663
664
665
666
667
668

            del pipeline
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

    # Handle the repository creation
    if accelerator.is_main_process:
669
        if args.output_dir is not None:
670
671
            os.makedirs(args.output_dir, exist_ok=True)

672
673
674
675
676
        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

677
678
    # Load the tokenizer
    if args.tokenizer_name:
Suraj Patil's avatar
Suraj Patil committed
679
        tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
680
    elif args.pretrained_model_name_or_path:
681
        tokenizer = AutoTokenizer.from_pretrained(
682
683
684
            args.pretrained_model_name_or_path,
            subfolder="tokenizer",
            revision=args.revision,
685
            use_fast=False,
686
        )
687

688
    # import correct text encoder class
689
    text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)
690

Suraj Patil's avatar
Suraj Patil committed
691
692
    # Load scheduler and models
    noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
693
    text_encoder = text_encoder_cls.from_pretrained(
Suraj Patil's avatar
Suraj Patil committed
694
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
695
    )
Suraj Patil's avatar
Suraj Patil committed
696
    vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)
697
    unet = UNet2DConditionModel.from_pretrained(
Suraj Patil's avatar
Suraj Patil committed
698
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
699
    )
700

701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
    # `accelerate` 0.16.0 will have better support for customized saving
    if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
        # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
        def save_model_hook(models, weights, output_dir):
            for model in models:
                sub_dir = "unet" if type(model) == type(unet) else "text_encoder"
                model.save_pretrained(os.path.join(output_dir, sub_dir))

                # make sure to pop weight so that corresponding model is not saved again
                weights.pop()

        def load_model_hook(models, input_dir):
            while len(models) > 0:
                # pop models so that they are not loaded again
                model = models.pop()

                if type(model) == type(text_encoder):
                    # load transformers style into model
                    load_model = text_encoder_cls.from_pretrained(input_dir, subfolder="text_encoder")
                    model.config = load_model.config
                else:
                    # load diffusers style into model
                    load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet")
                    model.register_to_config(**load_model.config)

                model.load_state_dict(load_model.state_dict())
                del load_model

        accelerator.register_save_state_pre_hook(save_model_hook)
        accelerator.register_load_state_pre_hook(load_model_hook)

Suraj Patil's avatar
Suraj Patil committed
732
733
734
735
    vae.requires_grad_(False)
    if not args.train_text_encoder:
        text_encoder.requires_grad_(False)

736
737
    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
738
739
740
741
742
743
744
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
                logger.warn(
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
745
            unet.enable_xformers_memory_efficient_attention()
746
747
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")
748

749
750
    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()
751
752
        if args.train_text_encoder:
            text_encoder.gradient_checkpointing_enable()
753

754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
    # Check that all trainable models are in full precision
    low_precision_error_string = (
        "Please make sure to always have all model weights in full float32 precision when starting training - even if"
        " doing mixed precision training. copy of the weights should still be float32."
    )

    if accelerator.unwrap_model(unet).dtype != torch.float32:
        raise ValueError(
            f"Unet loaded as datatype {accelerator.unwrap_model(unet).dtype}. {low_precision_error_string}"
        )

    if args.train_text_encoder and accelerator.unwrap_model(text_encoder).dtype != torch.float32:
        raise ValueError(
            f"Text encoder loaded as datatype {accelerator.unwrap_model(text_encoder).dtype}."
            f" {low_precision_error_string}"
        )

Suraj Patil's avatar
Suraj Patil committed
771
772
773
774
775
    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
    if args.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
            )

        optimizer_class = bnb.optim.AdamW8bit
    else:
        optimizer_class = torch.optim.AdamW

Suraj Patil's avatar
Suraj Patil committed
794
    # Optimizer creation
795
796
797
    params_to_optimize = (
        itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters()
    )
798
    optimizer = optimizer_class(
799
        params_to_optimize,
800
801
802
803
804
805
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

Suraj Patil's avatar
Suraj Patil committed
806
    # Dataset and DataLoaders creation:
807
808
809
810
811
    train_dataset = DreamBoothDataset(
        instance_data_root=args.instance_data_dir,
        instance_prompt=args.instance_prompt,
        class_data_root=args.class_data_dir if args.with_prior_preservation else None,
        class_prompt=args.class_prompt,
812
        class_num=args.num_class_images,
813
814
815
816
817
818
        tokenizer=tokenizer,
        size=args.resolution,
        center_crop=args.center_crop,
    )

    train_dataloader = torch.utils.data.DataLoader(
819
820
821
822
        train_dataset,
        batch_size=args.train_batch_size,
        shuffle=True,
        collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
823
        num_workers=args.dataloader_num_workers,
824
825
826
827
828
829
830
831
832
833
834
835
836
837
    )

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
        num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
838
839
        num_cycles=args.lr_num_cycles,
        power=args.lr_power,
840
841
    )

Suraj Patil's avatar
Suraj Patil committed
842
    # Prepare everything with our `accelerator`.
843
844
845
846
847
848
849
850
    if args.train_text_encoder:
        unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, text_encoder, optimizer, train_dataloader, lr_scheduler
        )
    else:
        unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, optimizer, train_dataloader, lr_scheduler
        )
851

Suraj Patil's avatar
Suraj Patil committed
852
853
    # For mixed precision training we cast the text_encoder and vae weights to half-precision
    # as these models are only used for inference, keeping weights in full precision is not required.
854
    weight_dtype = torch.float32
855
    if accelerator.mixed_precision == "fp16":
856
        weight_dtype = torch.float16
857
    elif accelerator.mixed_precision == "bf16":
858
859
        weight_dtype = torch.bfloat16

Suraj Patil's avatar
Suraj Patil committed
860
    # Move vae and text_encoder to device and cast to weight_dtype
861
    vae.to(accelerator.device, dtype=weight_dtype)
862
863
    if not args.train_text_encoder:
        text_encoder.to(accelerator.device, dtype=weight_dtype)
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        accelerator.init_trackers("dreambooth", config=vars(args))

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num batches each epoch = {len(train_dataloader)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
888
889
890
    global_step = 0
    first_epoch = 0

Suraj Patil's avatar
Suraj Patil committed
891
    # Potentially load in the weights and states from a previous save
892
893
894
895
896
897
898
899
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the mos recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

            resume_global_step = global_step * args.gradient_accumulation_steps
            first_epoch = global_step // num_update_steps_per_epoch
            resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
915

916
    # Only show the progress bar once on each machine.
917
    progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
918
919
    progress_bar.set_description("Steps")

920
    for epoch in range(first_epoch, args.num_train_epochs):
921
        unet.train()
922
923
        if args.train_text_encoder:
            text_encoder.train()
924
        for step, batch in enumerate(train_dataloader):
925
926
927
928
929
930
            # Skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
                if step % args.gradient_accumulation_steps == 0:
                    progress_bar.update(1)
                continue

931
932
            with accelerator.accumulate(unet):
                # Convert images to latent space
933
                latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
934
                latents = latents * vae.config.scaling_factor
935
936

                # Sample noise that we'll add to the latents
937
938
939
940
941
942
                if args.offset_noise:
                    noise = torch.randn_like(latents) + 0.1 * torch.randn(
                        latents.shape[0], latents.shape[1], 1, 1, device=latents.device
                    )
                else:
                    noise = torch.randn_like(latents)
943
944
945
946
947
948
949
950
951
952
                bsz = latents.shape[0]
                # Sample a random timestep for each image
                timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
                timesteps = timesteps.long()

                # Add noise to the latents according to the noise magnitude at each timestep
                # (this is the forward diffusion process)
                noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)

                # Get the text embedding for conditioning
953
                encoder_hidden_states = text_encoder(batch["input_ids"])[0]
954
955

                # Predict the noise residual
956
957
958
959
960
961
962
963
964
                model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample

                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
                    target = noise_scheduler.get_velocity(latents, noise, timesteps)
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
965
966

                if args.with_prior_preservation:
967
968
969
                    # Chunk the noise and model_pred into two parts and compute the loss on each part separately.
                    model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
                    target, target_prior = torch.chunk(target, 2, dim=0)
970
971

                    # Compute instance loss
972
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
973
974

                    # Compute prior loss
975
                    prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
976
977
978
979

                    # Add the prior loss to the instance loss.
                    loss = loss + args.prior_loss_weight * prior_loss
                else:
980
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
981
982

                accelerator.backward(loss)
983
                if accelerator.sync_gradients:
984
985
986
987
988
989
                    params_to_clip = (
                        itertools.chain(unet.parameters(), text_encoder.parameters())
                        if args.train_text_encoder
                        else unet.parameters()
                    )
                    accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
990
991
                optimizer.step()
                lr_scheduler.step()
992
                optimizer.zero_grad(set_to_none=args.set_grads_to_none)
993
994
995
996
997
998

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

999
1000
                if accelerator.is_main_process:
                    if global_step % args.checkpointing_steps == 0:
1001
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
1002
1003
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")
1004
1005
1006

                    if args.validation_prompt is not None and global_step % args.validation_steps == 0:
                        log_validation(text_encoder, tokenizer, unet, vae, args, accelerator, weight_dtype, epoch)
1007

1008
1009
1010
1011
1012
1013
1014
1015
            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break

    # Create the pipeline using using the trained modules and save it.
Suraj Patil's avatar
Suraj Patil committed
1016
    accelerator.wait_for_everyone()
1017
    if accelerator.is_main_process:
1018
        pipeline = DiffusionPipeline.from_pretrained(
1019
1020
1021
            args.pretrained_model_name_or_path,
            unet=accelerator.unwrap_model(unet),
            text_encoder=accelerator.unwrap_model(text_encoder),
1022
            revision=args.revision,
1023
1024
1025
1026
        )
        pipeline.save_pretrained(args.output_dir)

        if args.push_to_hub:
1027
1028
1029
1030
1031
1032
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )
1033
1034
1035
1036
1037

    accelerator.end_training()


if __name__ == "__main__":
1038
1039
    args = parse_args()
    main(args)