stable_diffusion_xl_reference.py 60.6 KB
Newer Older
1
2
# Based on stable_diffusion_reference.py

3
import inspect
4
5
6
7
8
9
10
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import numpy as np
import PIL.Image
import torch

from diffusers import StableDiffusionXLPipeline
11
12
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers.image_processor import PipelineImageInput
13
from diffusers.models.attention import BasicTransformerBlock
14
15
16
from diffusers.models.unets.unet_2d_blocks import CrossAttnDownBlock2D, CrossAttnUpBlock2D, DownBlock2D, UpBlock2D
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
from diffusers.utils import PIL_INTERPOLATION, deprecate, is_torch_xla_available, logging, replace_example_docstring
Dhruv Nair's avatar
Dhruv Nair committed
17
from diffusers.utils.torch_utils import randn_tensor
18
19


20
21
22
23
24
25
26
27
if is_torch_xla_available():
    import torch_xla.core.xla_model as xm  # type: ignore

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False


28
29
30
31
32
33
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
34
        >>> from diffusers.schedulers import UniPCMultistepScheduler
35
36
        >>> from diffusers.utils import load_image

37
        >>> input_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_input_cat.jpg")
38
39
40
41
42
43
44
45
46

        >>> pipe = StableDiffusionXLReferencePipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0",
            torch_dtype=torch.float16,
            use_safetensors=True,
            variant="fp16").to('cuda:0')

        >>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
        >>> result_img = pipe(ref_image=input_image,
47
                        prompt="a dog",
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
                        num_inference_steps=20,
                        reference_attn=True,
                        reference_adain=True).images[0]

        >>> result_img.show()
        ```
"""


def torch_dfs(model: torch.nn.Module):
    result = [model]
    for child in model.children():
        result += torch_dfs(child)
    return result


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    """
    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
    """
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg


79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    **kwargs,
):
    r"""
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.

    Args:
        scheduler (`SchedulerMixin`):
            The scheduler to get timesteps from.
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
            must be `None`.
        device (`str` or `torch.device`, *optional*):
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        timesteps (`List[int]`, *optional*):
            Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
            `num_inference_steps` and `sigmas` must be `None`.
        sigmas (`List[float]`, *optional*):
            Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
            `num_inference_steps` and `timesteps` must be `None`.

    Returns:
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
        second element is the number of inference steps.
    """
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accept_sigmas:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" sigmas schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps
137
138


139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
class StableDiffusionXLReferencePipeline(StableDiffusionXLPipeline):
    def prepare_ref_latents(self, refimage, batch_size, dtype, device, generator, do_classifier_free_guidance):
        refimage = refimage.to(device=device)
        if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
            self.upcast_vae()
            refimage = refimage.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
        if refimage.dtype != self.vae.dtype:
            refimage = refimage.to(dtype=self.vae.dtype)
        # encode the mask image into latents space so we can concatenate it to the latents
        if isinstance(generator, list):
            ref_image_latents = [
                self.vae.encode(refimage[i : i + 1]).latent_dist.sample(generator=generator[i])
                for i in range(batch_size)
            ]
            ref_image_latents = torch.cat(ref_image_latents, dim=0)
        else:
            ref_image_latents = self.vae.encode(refimage).latent_dist.sample(generator=generator)
        ref_image_latents = self.vae.config.scaling_factor * ref_image_latents

        # duplicate mask and ref_image_latents for each generation per prompt, using mps friendly method
        if ref_image_latents.shape[0] < batch_size:
            if not batch_size % ref_image_latents.shape[0] == 0:
                raise ValueError(
                    "The passed images and the required batch size don't match. Images are supposed to be duplicated"
                    f" to a total batch size of {batch_size}, but {ref_image_latents.shape[0]} images were passed."
                    " Make sure the number of images that you pass is divisible by the total requested batch size."
                )
            ref_image_latents = ref_image_latents.repeat(batch_size // ref_image_latents.shape[0], 1, 1, 1)
167

168
        ref_image_latents = torch.cat([ref_image_latents] * 2) if do_classifier_free_guidance else ref_image_latents
169

170
171
172
        # aligning device to prevent device errors when concating it with the latent model input
        ref_image_latents = ref_image_latents.to(device=device, dtype=dtype)
        return ref_image_latents
173

174
    def prepare_ref_image(
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
        self,
        image,
        width,
        height,
        batch_size,
        num_images_per_prompt,
        device,
        dtype,
        do_classifier_free_guidance=False,
        guess_mode=False,
    ):
        if not isinstance(image, torch.Tensor):
            if isinstance(image, PIL.Image.Image):
                image = [image]

            if isinstance(image[0], PIL.Image.Image):
                images = []

                for image_ in image:
                    image_ = image_.convert("RGB")
                    image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
                    image_ = np.array(image_)
                    image_ = image_[None, :]
                    images.append(image_)

                image = images

                image = np.concatenate(image, axis=0)
                image = np.array(image).astype(np.float32) / 255.0
                image = (image - 0.5) / 0.5
                image = image.transpose(0, 3, 1, 2)
                image = torch.from_numpy(image)

            elif isinstance(image[0], torch.Tensor):
                image = torch.stack(image, dim=0)

        image_batch_size = image.shape[0]

        if image_batch_size == 1:
            repeat_by = batch_size
        else:
            repeat_by = num_images_per_prompt

        image = image.repeat_interleave(repeat_by, dim=0)

        image = image.to(device=device, dtype=dtype)

        if do_classifier_free_guidance and not guess_mode:
            image = torch.cat([image] * 2)

        return image

227
228
229
230
231
232
233
234
235
236
237
    def check_ref_inputs(
        self,
        ref_image,
        reference_guidance_start,
        reference_guidance_end,
        style_fidelity,
        reference_attn,
        reference_adain,
    ):
        ref_image_is_pil = isinstance(ref_image, PIL.Image.Image)
        ref_image_is_tensor = isinstance(ref_image, torch.Tensor)
238

239
240
241
242
        if not ref_image_is_pil and not ref_image_is_tensor:
            raise TypeError(
                f"ref image must be passed and be one of PIL image or torch tensor, but is {type(ref_image)}"
            )
243

244
245
        if not reference_attn and not reference_adain:
            raise ValueError("`reference_attn` or `reference_adain` must be True.")
246

247
248
249
250
251
252
253
254
255
256
257
258
259
        if style_fidelity < 0.0:
            raise ValueError(f"style fidelity: {style_fidelity} can't be smaller than 0.")
        if style_fidelity > 1.0:
            raise ValueError(f"style fidelity: {style_fidelity} can't be larger than 1.0.")

        if reference_guidance_start >= reference_guidance_end:
            raise ValueError(
                f"reference guidance start: {reference_guidance_start} cannot be larger or equal to reference guidance end: {reference_guidance_end}."
            )
        if reference_guidance_start < 0.0:
            raise ValueError(f"reference guidance start: {reference_guidance_start} can't be smaller than 0.")
        if reference_guidance_end > 1.0:
            raise ValueError(f"reference guidance end: {reference_guidance_end} can't be larger than 1.0.")
260
261

    @torch.no_grad()
262
    @replace_example_docstring(EXAMPLE_DOC_STRING)
263
264
265
266
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        prompt_2: Optional[Union[str, List[str]]] = None,
267
        ref_image: Union[torch.Tensor, PIL.Image.Image] = None,
268
269
270
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
271
272
        timesteps: List[int] = None,
        sigmas: List[float] = None,
273
274
275
276
277
278
279
        denoising_end: Optional[float] = None,
        guidance_scale: float = 5.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        negative_prompt_2: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
280
281
282
283
284
        latents: Optional[torch.Tensor] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        pooled_prompt_embeds: Optional[torch.Tensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
285
286
        ip_adapter_image: Optional[PipelineImageInput] = None,
        ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
287
288
289
290
291
292
293
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        guidance_rescale: float = 0.0,
        original_size: Optional[Tuple[int, int]] = None,
        crops_coords_top_left: Tuple[int, int] = (0, 0),
        target_size: Optional[Tuple[int, int]] = None,
294
295
296
297
298
299
300
301
        negative_original_size: Optional[Tuple[int, int]] = None,
        negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
        negative_target_size: Optional[Tuple[int, int]] = None,
        clip_skip: Optional[int] = None,
        callback_on_step_end: Optional[
            Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
        ] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
302
303
        attention_auto_machine_weight: float = 1.0,
        gn_auto_machine_weight: float = 1.0,
304
305
        reference_guidance_start: float = 0.0,
        reference_guidance_end: float = 1.0,
306
307
308
        style_fidelity: float = 0.5,
        reference_attn: bool = True,
        reference_adain: bool = True,
309
        **kwargs,
310
    ):
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
                used in both text-encoders
            ref_image (`torch.Tensor`, `PIL.Image.Image`):
                The Reference Control input condition. Reference Control uses this input condition to generate guidance to Unet. If
                the type is specified as `Torch.Tensor`, it is passed to Reference Control as is. `PIL.Image.Image` can
                also be accepted as an image.
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image. This is set to 1024 by default for the best results.
                Anything below 512 pixels won't work well for
                [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
                and checkpoints that are not specifically fine-tuned on low resolutions.
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image. This is set to 1024 by default for the best results.
                Anything below 512 pixels won't work well for
                [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
                and checkpoints that are not specifically fine-tuned on low resolutions.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            timesteps (`List[int]`, *optional*):
                Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
                in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
                passed will be used. Must be in descending order.
            sigmas (`List[float]`, *optional*):
                Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
                their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
                will be used.
            denoising_end (`float`, *optional*):
                When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
                completed before it is intentionally prematurely terminated. As a result, the returned sample will
                still retain a substantial amount of noise as determined by the discrete timesteps selected by the
                scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
                "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
                Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
            guidance_scale (`float`, *optional*, defaults to 5.0):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            negative_prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
                `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.Tensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            pooled_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
            negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
                input argument.
            ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
            ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
                Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
                IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
                contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
                provided, embeddings are computed from the `ip_adapter_image` input argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
                of a plain tuple.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            guidance_rescale (`float`, *optional*, defaults to 0.0):
                Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
                Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
                [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
                Guidance rescale factor should fix overexposure when using zero terminal SNR.
            original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
                If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
                `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
                explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
            crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
                `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
                `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
                `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
            target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
                For most cases, `target_size` should be set to the desired height and width of the generated image. If
                not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
                section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
            negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
                To negatively condition the generation process based on a specific image resolution. Part of SDXL's
                micro-conditioning as explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
                information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
            negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
                To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
                micro-conditioning as explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
                information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
            negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
                To negatively condition the generation process based on a target image resolution. It should be as same
                as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
                information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
            callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
                A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
                each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
                DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
                list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.
            attention_auto_machine_weight (`float`):
                Weight of using reference query for self attention's context.
                If attention_auto_machine_weight=1.0, use reference query for all self attention's context.
            gn_auto_machine_weight (`float`):
                Weight of using reference adain. If gn_auto_machine_weight=2.0, use all reference adain plugins.
            reference_guidance_start (`float`, *optional*, defaults to 0.0):
                The percentage of total steps at which the reference ControlNet starts applying.
            reference_guidance_end (`float`, *optional*, defaults to 1.0):
                The percentage of total steps at which the reference ControlNet stops applying.
            style_fidelity (`float`):
                style fidelity of ref_uncond_xt. If style_fidelity=1.0, control more important,
                elif style_fidelity=0.0, prompt more important, else balanced.
            reference_attn (`bool`):
                Whether to use reference query for self attention's context.
            reference_adain (`bool`):
                Whether to use reference adain.

        Examples:

        Returns:
            [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
            `tuple`. When returning a tuple, the first element is a list with the generated images.
        """

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
            )
491

492
493
        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
494

495
        # 0. Default height and width to unet
496
497
        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor
498

499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
        original_size = original_size or (height, width)
        target_size = target_size or (height, width)

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            prompt_2,
            height,
            width,
            callback_steps,
            negative_prompt,
            negative_prompt_2,
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
515
516
517
518
519
520
521
522
523
524
525
526
            ip_adapter_image,
            ip_adapter_image_embeds,
            callback_on_step_end_tensor_inputs,
        )

        self.check_ref_inputs(
            ref_image,
            reference_guidance_start,
            reference_guidance_end,
            style_fidelity,
            reference_attn,
            reference_adain,
527
528
        )

529
530
531
532
533
534
535
        self._guidance_scale = guidance_scale
        self._guidance_rescale = guidance_rescale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs
        self._denoising_end = denoising_end
        self._interrupt = False

536
537
538
539
540
541
542
543
544
545
546
        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        # 3. Encode input prompt
547
548
        lora_scale = (
            self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
549
        )
550

551
552
553
554
555
556
557
558
559
560
        (
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        ) = self.encode_prompt(
            prompt=prompt,
            prompt_2=prompt_2,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
561
            do_classifier_free_guidance=self.do_classifier_free_guidance,
562
563
564
565
566
567
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
568
569
            lora_scale=lora_scale,
            clip_skip=self.clip_skip,
570
        )
571

572
        # 4. Preprocess reference image
573
        ref_image = self.prepare_ref_image(
574
575
576
577
578
579
580
581
582
583
            image=ref_image,
            width=width,
            height=height,
            batch_size=batch_size * num_images_per_prompt,
            num_images_per_prompt=num_images_per_prompt,
            device=device,
            dtype=prompt_embeds.dtype,
        )

        # 5. Prepare timesteps
584
585
586
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler, num_inference_steps, device, timesteps, sigmas
        )
587
588
589
590
591
592
593
594
595
596
597
598
599

        # 6. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )
600

601
602
603
604
605
606
607
        # 7. Prepare reference latent variables
        ref_image_latents = self.prepare_ref_latents(
            ref_image,
            batch_size * num_images_per_prompt,
            prompt_embeds.dtype,
            device,
            generator,
608
            self.do_classifier_free_guidance,
609
610
611
612
613
        )

        # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

614
615
616
617
618
619
620
621
622
        # 8.1 Create tensor stating which reference controlnets to keep
        reference_keeps = []
        for i in range(len(timesteps)):
            reference_keep = 1.0 - float(
                i / len(timesteps) < reference_guidance_start or (i + 1) / len(timesteps) > reference_guidance_end
            )
            reference_keeps.append(reference_keep)

        # 8.2 Modify self attention and group norm
623
624
625
626
627
628
629
        MODE = "write"
        uc_mask = (
            torch.Tensor([1] * batch_size * num_images_per_prompt + [0] * batch_size * num_images_per_prompt)
            .type_as(ref_image_latents)
            .bool()
        )

630
631
        do_classifier_free_guidance = self.do_classifier_free_guidance

632
633
        def hacked_basic_transformer_inner_forward(
            self,
634
635
636
637
            hidden_states: torch.Tensor,
            attention_mask: Optional[torch.Tensor] = None,
            encoder_hidden_states: Optional[torch.Tensor] = None,
            encoder_attention_mask: Optional[torch.Tensor] = None,
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
            timestep: Optional[torch.LongTensor] = None,
            cross_attention_kwargs: Dict[str, Any] = None,
            class_labels: Optional[torch.LongTensor] = None,
        ):
            if self.use_ada_layer_norm:
                norm_hidden_states = self.norm1(hidden_states, timestep)
            elif self.use_ada_layer_norm_zero:
                norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
                    hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
                )
            else:
                norm_hidden_states = self.norm1(hidden_states)

            # 1. Self-Attention
            cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
            if self.only_cross_attention:
                attn_output = self.attn1(
                    norm_hidden_states,
                    encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
                    attention_mask=attention_mask,
                    **cross_attention_kwargs,
                )
            else:
                if MODE == "write":
                    self.bank.append(norm_hidden_states.detach().clone())
                    attn_output = self.attn1(
                        norm_hidden_states,
                        encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
                        attention_mask=attention_mask,
                        **cross_attention_kwargs,
                    )
                if MODE == "read":
                    if attention_auto_machine_weight > self.attn_weight:
                        attn_output_uc = self.attn1(
                            norm_hidden_states,
                            encoder_hidden_states=torch.cat([norm_hidden_states] + self.bank, dim=1),
                            # attention_mask=attention_mask,
                            **cross_attention_kwargs,
                        )
                        attn_output_c = attn_output_uc.clone()
                        if do_classifier_free_guidance and style_fidelity > 0:
                            attn_output_c[uc_mask] = self.attn1(
                                norm_hidden_states[uc_mask],
                                encoder_hidden_states=norm_hidden_states[uc_mask],
                                **cross_attention_kwargs,
                            )
                        attn_output = style_fidelity * attn_output_c + (1.0 - style_fidelity) * attn_output_uc
                        self.bank.clear()
                    else:
                        attn_output = self.attn1(
                            norm_hidden_states,
                            encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
                            attention_mask=attention_mask,
                            **cross_attention_kwargs,
                        )
            if self.use_ada_layer_norm_zero:
                attn_output = gate_msa.unsqueeze(1) * attn_output
            hidden_states = attn_output + hidden_states

            if self.attn2 is not None:
                norm_hidden_states = (
                    self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
                )

                # 2. Cross-Attention
                attn_output = self.attn2(
                    norm_hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=encoder_attention_mask,
                    **cross_attention_kwargs,
                )
                hidden_states = attn_output + hidden_states

            # 3. Feed-forward
            norm_hidden_states = self.norm3(hidden_states)

            if self.use_ada_layer_norm_zero:
                norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]

            ff_output = self.ff(norm_hidden_states)

            if self.use_ada_layer_norm_zero:
                ff_output = gate_mlp.unsqueeze(1) * ff_output

            hidden_states = ff_output + hidden_states

            return hidden_states

        def hacked_mid_forward(self, *args, **kwargs):
            eps = 1e-6
            x = self.original_forward(*args, **kwargs)
            if MODE == "write":
                if gn_auto_machine_weight >= self.gn_weight:
                    var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
                    self.mean_bank.append(mean)
                    self.var_bank.append(var)
            if MODE == "read":
                if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
                    var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
                    std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
                    mean_acc = sum(self.mean_bank) / float(len(self.mean_bank))
                    var_acc = sum(self.var_bank) / float(len(self.var_bank))
                    std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
                    x_uc = (((x - mean) / std) * std_acc) + mean_acc
                    x_c = x_uc.clone()
                    if do_classifier_free_guidance and style_fidelity > 0:
                        x_c[uc_mask] = x[uc_mask]
                    x = style_fidelity * x_c + (1.0 - style_fidelity) * x_uc
                self.mean_bank = []
                self.var_bank = []
            return x

        def hack_CrossAttnDownBlock2D_forward(
            self,
752
753
754
755
            hidden_states: torch.Tensor,
            temb: Optional[torch.Tensor] = None,
            encoder_hidden_states: Optional[torch.Tensor] = None,
            attention_mask: Optional[torch.Tensor] = None,
756
            cross_attention_kwargs: Optional[Dict[str, Any]] = None,
757
            encoder_attention_mask: Optional[torch.Tensor] = None,
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
        ):
            eps = 1e-6

            # TODO(Patrick, William) - attention mask is not used
            output_states = ()

            for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
                hidden_states = resnet(hidden_states, temb)
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
                )[0]
                if MODE == "write":
                    if gn_auto_machine_weight >= self.gn_weight:
                        var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
                        self.mean_bank.append([mean])
                        self.var_bank.append([var])
                if MODE == "read":
                    if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
                        var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
                        std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
                        mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
                        var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
                        std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
                        hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
                        hidden_states_c = hidden_states_uc.clone()
                        if do_classifier_free_guidance and style_fidelity > 0:
                            hidden_states_c[uc_mask] = hidden_states[uc_mask]
                        hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc

                output_states = output_states + (hidden_states,)

            if MODE == "read":
                self.mean_bank = []
                self.var_bank = []

            if self.downsamplers is not None:
                for downsampler in self.downsamplers:
                    hidden_states = downsampler(hidden_states)

                output_states = output_states + (hidden_states,)

            return hidden_states, output_states

806
        def hacked_DownBlock2D_forward(self, hidden_states, temb=None, *args, **kwargs):
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
            eps = 1e-6

            output_states = ()

            for i, resnet in enumerate(self.resnets):
                hidden_states = resnet(hidden_states, temb)

                if MODE == "write":
                    if gn_auto_machine_weight >= self.gn_weight:
                        var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
                        self.mean_bank.append([mean])
                        self.var_bank.append([var])
                if MODE == "read":
                    if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
                        var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
                        std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
                        mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
                        var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
                        std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
                        hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
                        hidden_states_c = hidden_states_uc.clone()
                        if do_classifier_free_guidance and style_fidelity > 0:
                            hidden_states_c[uc_mask] = hidden_states[uc_mask]
                        hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc

                output_states = output_states + (hidden_states,)

            if MODE == "read":
                self.mean_bank = []
                self.var_bank = []

            if self.downsamplers is not None:
                for downsampler in self.downsamplers:
                    hidden_states = downsampler(hidden_states)

                output_states = output_states + (hidden_states,)

            return hidden_states, output_states

        def hacked_CrossAttnUpBlock2D_forward(
            self,
848
849
850
851
            hidden_states: torch.Tensor,
            res_hidden_states_tuple: Tuple[torch.Tensor, ...],
            temb: Optional[torch.Tensor] = None,
            encoder_hidden_states: Optional[torch.Tensor] = None,
852
853
            cross_attention_kwargs: Optional[Dict[str, Any]] = None,
            upsample_size: Optional[int] = None,
854
855
            attention_mask: Optional[torch.Tensor] = None,
            encoder_attention_mask: Optional[torch.Tensor] = None,
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
        ):
            eps = 1e-6
            # TODO(Patrick, William) - attention mask is not used
            for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
                # pop res hidden states
                res_hidden_states = res_hidden_states_tuple[-1]
                res_hidden_states_tuple = res_hidden_states_tuple[:-1]
                hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
                hidden_states = resnet(hidden_states, temb)
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
                )[0]

                if MODE == "write":
                    if gn_auto_machine_weight >= self.gn_weight:
                        var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
                        self.mean_bank.append([mean])
                        self.var_bank.append([var])
                if MODE == "read":
                    if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
                        var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
                        std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
                        mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
                        var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
                        std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
                        hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
                        hidden_states_c = hidden_states_uc.clone()
                        if do_classifier_free_guidance and style_fidelity > 0:
                            hidden_states_c[uc_mask] = hidden_states[uc_mask]
                        hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc

            if MODE == "read":
                self.mean_bank = []
                self.var_bank = []

            if self.upsamplers is not None:
                for upsampler in self.upsamplers:
                    hidden_states = upsampler(hidden_states, upsample_size)

            return hidden_states

902
        def hacked_UpBlock2D_forward(
903
            self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, *args, **kwargs
904
        ):
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
            eps = 1e-6
            for i, resnet in enumerate(self.resnets):
                # pop res hidden states
                res_hidden_states = res_hidden_states_tuple[-1]
                res_hidden_states_tuple = res_hidden_states_tuple[:-1]
                hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
                hidden_states = resnet(hidden_states, temb)

                if MODE == "write":
                    if gn_auto_machine_weight >= self.gn_weight:
                        var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
                        self.mean_bank.append([mean])
                        self.var_bank.append([var])
                if MODE == "read":
                    if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
                        var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
                        std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
                        mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
                        var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
                        std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
                        hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
                        hidden_states_c = hidden_states_uc.clone()
                        if do_classifier_free_guidance and style_fidelity > 0:
                            hidden_states_c[uc_mask] = hidden_states[uc_mask]
                        hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc

            if MODE == "read":
                self.mean_bank = []
                self.var_bank = []

            if self.upsamplers is not None:
                for upsampler in self.upsamplers:
                    hidden_states = upsampler(hidden_states, upsample_size)

            return hidden_states

        if reference_attn:
            attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock)]
            attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0])

            for i, module in enumerate(attn_modules):
                module._original_inner_forward = module.forward
                module.forward = hacked_basic_transformer_inner_forward.__get__(module, BasicTransformerBlock)
                module.bank = []
                module.attn_weight = float(i) / float(len(attn_modules))

        if reference_adain:
            gn_modules = [self.unet.mid_block]
            self.unet.mid_block.gn_weight = 0

            down_blocks = self.unet.down_blocks
            for w, module in enumerate(down_blocks):
                module.gn_weight = 1.0 - float(w) / float(len(down_blocks))
                gn_modules.append(module)

            up_blocks = self.unet.up_blocks
            for w, module in enumerate(up_blocks):
                module.gn_weight = float(w) / float(len(up_blocks))
                gn_modules.append(module)

            for i, module in enumerate(gn_modules):
                if getattr(module, "original_forward", None) is None:
                    module.original_forward = module.forward
                if i == 0:
                    # mid_block
                    module.forward = hacked_mid_forward.__get__(module, torch.nn.Module)
                elif isinstance(module, CrossAttnDownBlock2D):
                    module.forward = hack_CrossAttnDownBlock2D_forward.__get__(module, CrossAttnDownBlock2D)
                elif isinstance(module, DownBlock2D):
                    module.forward = hacked_DownBlock2D_forward.__get__(module, DownBlock2D)
                elif isinstance(module, CrossAttnUpBlock2D):
                    module.forward = hacked_CrossAttnUpBlock2D_forward.__get__(module, CrossAttnUpBlock2D)
                elif isinstance(module, UpBlock2D):
                    module.forward = hacked_UpBlock2D_forward.__get__(module, UpBlock2D)
                module.mean_bank = []
                module.var_bank = []
                module.gn_weight *= 2

983
        # 9. Prepare added time ids & embeddings
984
        add_text_embeds = pooled_prompt_embeds
985
986
987
988
989
        if self.text_encoder_2 is None:
            text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
        else:
            text_encoder_projection_dim = self.text_encoder_2.config.projection_dim

990
        add_time_ids = self._get_add_time_ids(
991
992
993
994
995
            original_size,
            crops_coords_top_left,
            target_size,
            dtype=prompt_embeds.dtype,
            text_encoder_projection_dim=text_encoder_projection_dim,
996
        )
997
998
999
1000
1001
1002
1003
1004
1005
1006
        if negative_original_size is not None and negative_target_size is not None:
            negative_add_time_ids = self._get_add_time_ids(
                negative_original_size,
                negative_crops_coords_top_left,
                negative_target_size,
                dtype=prompt_embeds.dtype,
                text_encoder_projection_dim=text_encoder_projection_dim,
            )
        else:
            negative_add_time_ids = add_time_ids
1007

1008
        if self.do_classifier_free_guidance:
1009
1010
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
            add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
1011
            add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
1012
1013
1014
1015
1016

        prompt_embeds = prompt_embeds.to(device)
        add_text_embeds = add_text_embeds.to(device)
        add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)

1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
        if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
            image_embeds = self.prepare_ip_adapter_image_embeds(
                ip_adapter_image,
                ip_adapter_image_embeds,
                device,
                batch_size * num_images_per_prompt,
                self.do_classifier_free_guidance,
            )

        # 10. Denoising loop
1027
1028
1029
        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)

        # 10.1 Apply denoising_end
1030
1031
1032
1033
1034
1035
        if (
            self.denoising_end is not None
            and isinstance(self.denoising_end, float)
            and self.denoising_end > 0
            and self.denoising_end < 1
        ):
1036
1037
1038
            discrete_timestep_cutoff = int(
                round(
                    self.scheduler.config.num_train_timesteps
1039
                    - (self.denoising_end * self.scheduler.config.num_train_timesteps)
1040
1041
1042
1043
1044
                )
            )
            num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
            timesteps = timesteps[:num_inference_steps]

1045
1046
1047
1048
1049
1050
1051
1052
1053
        # 11. Optionally get Guidance Scale Embedding
        timestep_cond = None
        if self.unet.config.time_cond_proj_dim is not None:
            guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
            timestep_cond = self.get_guidance_scale_embedding(
                guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
            ).to(device=device, dtype=latents.dtype)

        self._num_timesteps = len(timesteps)
1054
1055
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
1056
1057
1058
                if self.interrupt:
                    continue

1059
                # expand the latents if we are doing classifier free guidance
1060
                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1061
1062
1063

                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

1064
                # predict the noise residual
1065
                added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
1066
1067
                if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
                    added_cond_kwargs["image_embeds"] = image_embeds
1068
1069

                # ref only part
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
                if reference_keeps[i] > 0:
                    noise = randn_tensor(
                        ref_image_latents.shape, generator=generator, device=device, dtype=ref_image_latents.dtype
                    )
                    ref_xt = self.scheduler.add_noise(
                        ref_image_latents,
                        noise,
                        t.reshape(
                            1,
                        ),
                    )
                    ref_xt = self.scheduler.scale_model_input(ref_xt, t)

                    MODE = "write"
                    self.unet(
                        ref_xt,
                        t,
                        encoder_hidden_states=prompt_embeds,
                        cross_attention_kwargs=cross_attention_kwargs,
                        added_cond_kwargs=added_cond_kwargs,
                        return_dict=False,
                    )
1092
1093
1094
1095
1096
1097
1098

                # predict the noise residual
                MODE = "read"
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
1099
1100
                    timestep_cond=timestep_cond,
                    cross_attention_kwargs=self.cross_attention_kwargs,
1101
1102
1103
1104
1105
                    added_cond_kwargs=added_cond_kwargs,
                    return_dict=False,
                )[0]

                # perform guidance
1106
                if self.do_classifier_free_guidance:
1107
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1108
                    noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1109

1110
                if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
1111
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
1112
                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
1113
1114

                # compute the previous noisy sample x_t -> x_t-1
1115
                latents_dtype = latents.dtype
1116
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
                if latents.dtype != latents_dtype:
                    if torch.backends.mps.is_available():
                        # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
                        latents = latents.to(latents_dtype)

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
                    add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
                    negative_pooled_prompt_embeds = callback_outputs.pop(
                        "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
                    )
                    add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
                    negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids)
1137
1138
1139
1140
1141

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
1142
1143
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)
1144

1145
1146
1147
                if XLA_AVAILABLE:
                    xm.mark_step()

1148
        if not output_type == "latent":
1149
1150
1151
1152
1153
1154
            # make sure the VAE is in float32 mode, as it overflows in float16
            needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast

            if needs_upcasting:
                self.upcast_vae()
                latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
            elif latents.dtype != self.vae.dtype:
                if torch.backends.mps.is_available():
                    # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
                    self.vae = self.vae.to(latents.dtype)

            # unscale/denormalize the latents
            # denormalize with the mean and std if available and not None
            has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
            has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
            if has_latents_mean and has_latents_std:
                latents_mean = (
                    torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
                )
                latents_std = (
                    torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
                )
                latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
            else:
                latents = latents / self.vae.config.scaling_factor
1174

1175
            image = self.vae.decode(latents, return_dict=False)[0]
1176
1177
1178
1179

            # cast back to fp16 if needed
            if needs_upcasting:
                self.vae.to(dtype=torch.float16)
1180
1181
1182
        else:
            image = latents

1183
1184
1185
1186
        if not output_type == "latent":
            # apply watermark if available
            if self.watermark is not None:
                image = self.watermark.apply_watermark(image)
1187

1188
            image = self.image_processor.postprocess(image, output_type=output_type)
1189

1190
1191
        # Offload all models
        self.maybe_free_model_hooks()
1192
1193
1194
1195
1196

        if not return_dict:
            return (image,)

        return StableDiffusionXLPipelineOutput(images=image)