test_modeling_common.py 8.36 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import tempfile
18
import unittest
19
from typing import Dict, List, Tuple
20
21
22
23

import numpy as np
import torch

24
from diffusers.modeling_utils import ModelMixin
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from diffusers.testing_utils import torch_device
from diffusers.training_utils import EMAModel


class ModelTesterMixin:
    def test_from_pretrained_save_pretrained(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
            new_model = self.model_class.from_pretrained(tmpdirname)
            new_model.to(torch_device)

        with torch.no_grad():
43
44
45
46
47
            # Warmup pass when using mps (see #372)
            if torch_device == "mps" and isinstance(model, ModelMixin):
                _ = model(**self.dummy_input)
                _ = new_model(**self.dummy_input)

48
49
            image = model(**inputs_dict)
            if isinstance(image, dict):
50
                image = image.sample
51
52
53
54

            new_image = new_model(**inputs_dict)

            if isinstance(new_image, dict):
55
                new_image = new_image.sample
56
57
58
59
60
61
62
63
64

        max_diff = (image - new_image).abs().sum().item()
        self.assertLessEqual(max_diff, 5e-5, "Models give different forward passes")

    def test_determinism(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()
65

66
        with torch.no_grad():
67
68
69
70
            # Warmup pass when using mps (see #372)
            if torch_device == "mps" and isinstance(model, ModelMixin):
                model(**self.dummy_input)

71
72
            first = model(**inputs_dict)
            if isinstance(first, dict):
73
                first = first.sample
74
75
76

            second = model(**inputs_dict)
            if isinstance(second, dict):
77
                second = second.sample
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

        out_1 = first.cpu().numpy()
        out_2 = second.cpu().numpy()
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)

    def test_output(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
96
                output = output.sample
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

    def test_forward_signature(self):
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        signature = inspect.signature(model.forward)
        # signature.parameters is an OrderedDict => so arg_names order is deterministic
        arg_names = [*signature.parameters.keys()]

        expected_arg_names = ["sample", "timestep"]
        self.assertListEqual(arg_names[:2], expected_arg_names)

    def test_model_from_config(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        # test if the model can be loaded from the config
        # and has all the expected shape
        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_config(tmpdirname)
            new_model = self.model_class.from_config(tmpdirname)
            new_model.to(torch_device)
            new_model.eval()

        # check if all paramters shape are the same
        for param_name in model.state_dict().keys():
            param_1 = model.state_dict()[param_name]
            param_2 = new_model.state_dict()[param_name]
            self.assertEqual(param_1.shape, param_2.shape)

        with torch.no_grad():
            output_1 = model(**inputs_dict)

            if isinstance(output_1, dict):
138
                output_1 = output_1.sample
139
140
141
142

            output_2 = new_model(**inputs_dict)

            if isinstance(output_2, dict):
143
                output_2 = output_2.sample
144
145
146

        self.assertEqual(output_1.shape, output_2.shape)

147
    @unittest.skipIf(torch_device == "mps", "Training is not supported in mps")
148
149
150
151
152
153
154
155
156
    def test_training(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        output = model(**inputs_dict)

        if isinstance(output, dict):
157
            output = output.sample
158
159
160
161
162

        noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device)
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()

163
    @unittest.skipIf(torch_device == "mps", "Training is not supported in mps")
164
165
166
167
168
169
170
171
172
173
174
    def test_ema_training(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        ema_model = EMAModel(model, device=torch_device)

        output = model(**inputs_dict)

        if isinstance(output, dict):
175
            output = output.sample
176
177
178
179
180

        noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device)
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()
        ema_model.step(model)
181

182
    def test_outputs_equivalence(self):
183
        def set_nan_tensor_to_zero(t):
184
185
186
187
188
            # Temporary fallback until `aten::_index_put_impl_` is implemented in mps
            # Track progress in https://github.com/pytorch/pytorch/issues/77764
            device = t.device
            if device.type == "mps":
                t = t.to("cpu")
189
            t[t != t] = 0
190
            return t.to(device)
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

        def recursive_check(tuple_object, dict_object):
            if isinstance(tuple_object, (List, Tuple)):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif isinstance(tuple_object, Dict):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif tuple_object is None:
                return
            else:
                self.assertTrue(
                    torch.allclose(
                        set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                    ),
                    msg=(
                        "Tuple and dict output are not equal. Difference:"
                        f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                        f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                        f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                    ),
                )

        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

220
221
222
223
224
225
226
        with torch.no_grad():
            # Warmup pass when using mps (see #372)
            if torch_device == "mps" and isinstance(model, ModelMixin):
                model(**self.dummy_input)

            outputs_dict = model(**inputs_dict)
            outputs_tuple = model(**inputs_dict, return_dict=False)
227
228

        recursive_check(outputs_tuple, outputs_dict)