scheduling_sasolver.py 53.8 KB
Newer Older
1
# Copyright 2024 Shuchen Xue, etc. in University of Chinese Academy of Sciences Team and The HuggingFace Team. All rights reserved.
Junsong Chen's avatar
Junsong Chen committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: check https://arxiv.org/abs/2309.05019
# The codebase is modified based on https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

import math
from typing import Callable, List, Optional, Tuple, Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
25
from ..utils import deprecate, is_scipy_available
Junsong Chen's avatar
Junsong Chen committed
26
27
28
29
from ..utils.torch_utils import randn_tensor
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput


30
31
32
33
if is_scipy_available():
    import scipy.stats


Junsong Chen's avatar
Junsong Chen committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
    if alpha_transform_type == "cosine":

        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
69
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
Junsong Chen's avatar
Junsong Chen committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
    return torch.tensor(betas, dtype=torch.float32)


class SASolverScheduler(SchedulerMixin, ConfigMixin):
    """
    `SASolverScheduler` is a fast dedicated high-order solver for diffusion SDEs.

    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.

    Args:
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        predictor_order (`int`, defaults to 2):
99
100
            The predictor order which can be `1` or `2` or `3` or '4'. It is recommended to use `predictor_order=2` for
            guided sampling, and `predictor_order=3` for unconditional sampling.
Junsong Chen's avatar
Junsong Chen committed
101
        corrector_order (`int`, defaults to 2):
102
103
            The corrector order which can be `1` or `2` or `3` or '4'. It is recommended to use `corrector_order=2` for
            guided sampling, and `corrector_order=3` for unconditional sampling.
Junsong Chen's avatar
Junsong Chen committed
104
105
106
107
108
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        tau_func (`Callable`, *optional*):
109
110
111
112
            Stochasticity during the sampling. Default in init is `lambda t: 1 if t >= 200 and t <= 800 else 0`.
            SA-Solver will sample from vanilla diffusion ODE if tau_func is set to `lambda t: 0`. SA-Solver will sample
            from vanilla diffusion SDE if tau_func is set to `lambda t: 1`. For more details, please check
            https://arxiv.org/abs/2309.05019
Junsong Chen's avatar
Junsong Chen committed
113
114
115
116
117
118
119
120
121
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
            `algorithm_type="dpmsolver++"`.
        algorithm_type (`str`, defaults to `data_prediction`):
122
123
            Algorithm type for the solver; can be `data_prediction` or `noise_prediction`. It is recommended to use
            `data_prediction` with `solver_order=2` for guided sampling like in Stable Diffusion.
Junsong Chen's avatar
Junsong Chen committed
124
125
126
127
128
        lower_order_final (`bool`, defaults to `True`):
            Whether to use lower-order solvers in the final steps. Default = True.
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
129
130
        use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
131
132
133
        use_beta_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
            Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
Junsong Chen's avatar
Junsong Chen committed
134
135
136
137
138
139
140
141
142
143
        lambda_min_clipped (`float`, defaults to `-inf`):
            Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
            cosine (`squaredcos_cap_v2`) noise schedule.
        variance_type (`str`, *optional*):
            Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output
            contains the predicted Gaussian variance.
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
144
            An offset added to the inference steps, as required by some model families.
Junsong Chen's avatar
Junsong Chen committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
    """

    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
        predictor_order: int = 2,
        corrector_order: int = 2,
        prediction_type: str = "epsilon",
        tau_func: Optional[Callable] = None,
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
        algorithm_type: str = "data_prediction",
        lower_order_final: bool = True,
        use_karras_sigmas: Optional[bool] = False,
168
        use_exponential_sigmas: Optional[bool] = False,
169
        use_beta_sigmas: Optional[bool] = False,
170
171
        use_flow_sigmas: Optional[bool] = False,
        flow_shift: Optional[float] = 1.0,
Junsong Chen's avatar
Junsong Chen committed
172
173
174
175
176
        lambda_min_clipped: float = -float("inf"),
        variance_type: Optional[str] = None,
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
    ):
177
178
179
180
181
182
        if self.config.use_beta_sigmas and not is_scipy_available():
            raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
        if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
            raise ValueError(
                "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
            )
Junsong Chen's avatar
Junsong Chen committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
            self.betas = (
                torch.linspace(
                    beta_start**0.5,
                    beta_end**0.5,
                    num_train_timesteps,
                    dtype=torch.float32,
                )
                ** 2
            )
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
202
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
Junsong Chen's avatar
Junsong Chen committed
203
204
205
206
207
208
209
210
211
212
213
214
215

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        # Currently we only support VP-type noise schedule
        self.alpha_t = torch.sqrt(self.alphas_cumprod)
        self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
        self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
        self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        if algorithm_type not in ["data_prediction", "noise_prediction"]:
216
            raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
Junsong Chen's avatar
Junsong Chen committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.timestep_list = [None] * max(predictor_order, corrector_order - 1)
        self.model_outputs = [None] * max(predictor_order, corrector_order - 1)

        if tau_func is None:
            self.tau_func = lambda t: 1 if t >= 200 and t <= 800 else 0
        else:
            self.tau_func = tau_func
        self.predict_x0 = algorithm_type == "data_prediction"
        self.lower_order_nums = 0
        self.last_sample = None
        self._step_index = None
233
        self._begin_index = None
234
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
Junsong Chen's avatar
Junsong Chen committed
235
236
237
238

    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
239
        The index counter for current timestep. It will increase 1 after each scheduler step.
Junsong Chen's avatar
Junsong Chen committed
240
241
242
        """
        return self._step_index

243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

Junsong Chen's avatar
Junsong Chen committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
    def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
        """
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).

        Args:
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        """
        # Clipping the minimum of all lambda(t) for numerical stability.
        # This is critical for cosine (squaredcos_cap_v2) noise schedule.
        clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped)
        last_timestep = ((self.config.num_train_timesteps - clipped_idx).numpy()).item()

        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
            timesteps = (
                np.linspace(0, last_timestep - 1, num_inference_steps + 1).round()[::-1][:-1].copy().astype(np.int64)
            )

        elif self.config.timestep_spacing == "leading":
            step_ratio = last_timestep // (num_inference_steps + 1)
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = np.arange(last_timestep, 0, -step_ratio).round().copy().astype(np.int64)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )

        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
300
        log_sigmas = np.log(sigmas)
Junsong Chen's avatar
Junsong Chen committed
301
302
303
304
305
        if self.config.use_karras_sigmas:
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
            sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
306
        elif self.config.use_exponential_sigmas:
307
308
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
309
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
310
            sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
311
        elif self.config.use_beta_sigmas:
312
313
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
314
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
315
            sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
316
317
318
        elif self.config.use_flow_sigmas:
            alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)
            sigmas = 1.0 - alphas
hlky's avatar
hlky committed
319
            sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy()
320
            timesteps = (sigmas * self.config.num_train_timesteps).copy()
321
            sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
Junsong Chen's avatar
Junsong Chen committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
        else:
            sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
            sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)

        self.sigmas = torch.from_numpy(sigmas)
        self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)

        self.num_inference_steps = len(timesteps)
        self.model_outputs = [
            None,
        ] * max(self.config.predictor_order, self.config.corrector_order - 1)
        self.lower_order_nums = 0
        self.last_sample = None

        # add an index counter for schedulers that allow duplicated timesteps
        self._step_index = None
339
        self._begin_index = None
340
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
Junsong Chen's avatar
Junsong Chen committed
341
342

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
343
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
Junsong Chen's avatar
Junsong Chen committed
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
        batch_size, channels, *remaining_dims = sample.shape

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

        sample = sample.reshape(batch_size, channels, *remaining_dims)
        sample = sample.to(dtype)

        return sample

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
        log_sigma = np.log(np.maximum(sigma, 1e-10))

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
    def _sigma_to_alpha_sigma_t(self, sigma):
402
403
404
405
406
407
        if self.config.use_flow_sigmas:
            alpha_t = 1 - sigma
            sigma_t = sigma
        else:
            alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
            sigma_t = sigma * alpha_t
Junsong Chen's avatar
Junsong Chen committed
408
409
410
411

        return alpha_t, sigma_t

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
412
    def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
Junsong Chen's avatar
Junsong Chen committed
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
        """Constructs the noise schedule of Karras et al. (2022)."""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
    def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
        """Constructs an exponential noise schedule."""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

456
        sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
457
458
        return sigmas

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
    def _convert_to_beta(
        self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
    ) -> torch.Tensor:
        """From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

480
        sigmas = np.array(
481
482
483
484
485
486
487
488
489
490
            [
                sigma_min + (ppf * (sigma_max - sigma_min))
                for ppf in [
                    scipy.stats.beta.ppf(timestep, alpha, beta)
                    for timestep in 1 - np.linspace(0, 1, num_inference_steps)
                ]
            ]
        )
        return sigmas

Junsong Chen's avatar
Junsong Chen committed
491
492
    def convert_model_output(
        self,
493
        model_output: torch.Tensor,
Junsong Chen's avatar
Junsong Chen committed
494
        *args,
495
        sample: torch.Tensor = None,
Junsong Chen's avatar
Junsong Chen committed
496
        **kwargs,
497
    ) -> torch.Tensor:
Junsong Chen's avatar
Junsong Chen committed
498
        """
499
500
501
        Convert the model output to the corresponding type the data_prediction/noise_prediction algorithm needs.
        Noise_prediction is designed to discretize an integral of the noise prediction model, and data_prediction is
        designed to discretize an integral of the data prediction model.
Junsong Chen's avatar
Junsong Chen committed
502
503
504

        <Tip>

505
506
        The algorithm and model type are decoupled. You can use either data_prediction or noise_prediction for both
        noise prediction and data prediction models.
Junsong Chen's avatar
Junsong Chen committed
507
508
509
510

        </Tip>

        Args:
511
            model_output (`torch.Tensor`):
Junsong Chen's avatar
Junsong Chen committed
512
                The direct output from the learned diffusion model.
513
            sample (`torch.Tensor`):
Junsong Chen's avatar
Junsong Chen committed
514
515
516
                A current instance of a sample created by the diffusion process.

        Returns:
517
            `torch.Tensor`:
Junsong Chen's avatar
Junsong Chen committed
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
                The converted model output.
        """
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
                raise ValueError("missing `sample` as a required keyward argument")
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma = self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
        # SA-Solver_data_prediction needs to solve an integral of the data prediction model.
        if self.config.algorithm_type in ["data_prediction"]:
            if self.config.prediction_type == "epsilon":
                # SA-Solver only needs the "mean" output.
                if self.config.variance_type in ["learned", "learned_range"]:
                    model_output = model_output[:, :3]
                x0_pred = (sample - sigma_t * model_output) / alpha_t
            elif self.config.prediction_type == "sample":
                x0_pred = model_output
            elif self.config.prediction_type == "v_prediction":
                x0_pred = alpha_t * sample - sigma_t * model_output
546
547
548
            elif self.config.prediction_type == "flow_prediction":
                sigma_t = self.sigmas[self.step_index]
                x0_pred = sample - sigma_t * model_output
Junsong Chen's avatar
Junsong Chen committed
549
550
            else:
                raise ValueError(
551
552
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
                    "`v_prediction`, or `flow_prediction` for the SASolverScheduler."
Junsong Chen's avatar
Junsong Chen committed
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
                )

            if self.config.thresholding:
                x0_pred = self._threshold_sample(x0_pred)

            return x0_pred

        # SA-Solver_noise_prediction needs to solve an integral of the noise prediction model.
        elif self.config.algorithm_type in ["noise_prediction"]:
            if self.config.prediction_type == "epsilon":
                # SA-Solver only needs the "mean" output.
                if self.config.variance_type in ["learned", "learned_range"]:
                    epsilon = model_output[:, :3]
                else:
                    epsilon = model_output
            elif self.config.prediction_type == "sample":
                epsilon = (sample - alpha_t * model_output) / sigma_t
            elif self.config.prediction_type == "v_prediction":
                epsilon = alpha_t * model_output + sigma_t * sample
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                    " `v_prediction` for the SASolverScheduler."
                )

            if self.config.thresholding:
                alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
                x0_pred = (sample - sigma_t * epsilon) / alpha_t
                x0_pred = self._threshold_sample(x0_pred)
                epsilon = (sample - alpha_t * x0_pred) / sigma_t

            return epsilon

    def get_coefficients_exponential_negative(self, order, interval_start, interval_end):
        """
        Calculate the integral of exp(-x) * x^order dx from interval_start to interval_end
        """
        assert order in [0, 1, 2, 3], "order is only supported for 0, 1, 2 and 3"

        if order == 0:
            return torch.exp(-interval_end) * (torch.exp(interval_end - interval_start) - 1)
        elif order == 1:
            return torch.exp(-interval_end) * (
                (interval_start + 1) * torch.exp(interval_end - interval_start) - (interval_end + 1)
            )
        elif order == 2:
            return torch.exp(-interval_end) * (
                (interval_start**2 + 2 * interval_start + 2) * torch.exp(interval_end - interval_start)
                - (interval_end**2 + 2 * interval_end + 2)
            )
        elif order == 3:
            return torch.exp(-interval_end) * (
                (interval_start**3 + 3 * interval_start**2 + 6 * interval_start + 6)
                * torch.exp(interval_end - interval_start)
                - (interval_end**3 + 3 * interval_end**2 + 6 * interval_end + 6)
            )

    def get_coefficients_exponential_positive(self, order, interval_start, interval_end, tau):
        """
        Calculate the integral of exp(x(1+tau^2)) * x^order dx from interval_start to interval_end
        """
        assert order in [0, 1, 2, 3], "order is only supported for 0, 1, 2 and 3"

        # after change of variable(cov)
        interval_end_cov = (1 + tau**2) * interval_end
        interval_start_cov = (1 + tau**2) * interval_start

        if order == 0:
            return (
                torch.exp(interval_end_cov) * (1 - torch.exp(-(interval_end_cov - interval_start_cov))) / (1 + tau**2)
            )
        elif order == 1:
            return (
                torch.exp(interval_end_cov)
                * (
                    (interval_end_cov - 1)
                    - (interval_start_cov - 1) * torch.exp(-(interval_end_cov - interval_start_cov))
                )
                / ((1 + tau**2) ** 2)
            )
        elif order == 2:
            return (
                torch.exp(interval_end_cov)
                * (
                    (interval_end_cov**2 - 2 * interval_end_cov + 2)
                    - (interval_start_cov**2 - 2 * interval_start_cov + 2)
                    * torch.exp(-(interval_end_cov - interval_start_cov))
                )
                / ((1 + tau**2) ** 3)
            )
        elif order == 3:
            return (
                torch.exp(interval_end_cov)
                * (
                    (interval_end_cov**3 - 3 * interval_end_cov**2 + 6 * interval_end_cov - 6)
                    - (interval_start_cov**3 - 3 * interval_start_cov**2 + 6 * interval_start_cov - 6)
                    * torch.exp(-(interval_end_cov - interval_start_cov))
                )
                / ((1 + tau**2) ** 4)
            )

    def lagrange_polynomial_coefficient(self, order, lambda_list):
        """
        Calculate the coefficient of lagrange polynomial
        """

        assert order in [0, 1, 2, 3]
        assert order == len(lambda_list) - 1
        if order == 0:
            return [[1]]
        elif order == 1:
            return [
                [
                    1 / (lambda_list[0] - lambda_list[1]),
                    -lambda_list[1] / (lambda_list[0] - lambda_list[1]),
                ],
                [
                    1 / (lambda_list[1] - lambda_list[0]),
                    -lambda_list[0] / (lambda_list[1] - lambda_list[0]),
                ],
            ]
        elif order == 2:
            denominator1 = (lambda_list[0] - lambda_list[1]) * (lambda_list[0] - lambda_list[2])
            denominator2 = (lambda_list[1] - lambda_list[0]) * (lambda_list[1] - lambda_list[2])
            denominator3 = (lambda_list[2] - lambda_list[0]) * (lambda_list[2] - lambda_list[1])
            return [
                [
                    1 / denominator1,
                    (-lambda_list[1] - lambda_list[2]) / denominator1,
                    lambda_list[1] * lambda_list[2] / denominator1,
                ],
                [
                    1 / denominator2,
                    (-lambda_list[0] - lambda_list[2]) / denominator2,
                    lambda_list[0] * lambda_list[2] / denominator2,
                ],
                [
                    1 / denominator3,
                    (-lambda_list[0] - lambda_list[1]) / denominator3,
                    lambda_list[0] * lambda_list[1] / denominator3,
                ],
            ]
        elif order == 3:
            denominator1 = (
                (lambda_list[0] - lambda_list[1])
                * (lambda_list[0] - lambda_list[2])
                * (lambda_list[0] - lambda_list[3])
            )
            denominator2 = (
                (lambda_list[1] - lambda_list[0])
                * (lambda_list[1] - lambda_list[2])
                * (lambda_list[1] - lambda_list[3])
            )
            denominator3 = (
                (lambda_list[2] - lambda_list[0])
                * (lambda_list[2] - lambda_list[1])
                * (lambda_list[2] - lambda_list[3])
            )
            denominator4 = (
                (lambda_list[3] - lambda_list[0])
                * (lambda_list[3] - lambda_list[1])
                * (lambda_list[3] - lambda_list[2])
            )
            return [
                [
                    1 / denominator1,
                    (-lambda_list[1] - lambda_list[2] - lambda_list[3]) / denominator1,
                    (
                        lambda_list[1] * lambda_list[2]
                        + lambda_list[1] * lambda_list[3]
                        + lambda_list[2] * lambda_list[3]
                    )
                    / denominator1,
                    (-lambda_list[1] * lambda_list[2] * lambda_list[3]) / denominator1,
                ],
                [
                    1 / denominator2,
                    (-lambda_list[0] - lambda_list[2] - lambda_list[3]) / denominator2,
                    (
                        lambda_list[0] * lambda_list[2]
                        + lambda_list[0] * lambda_list[3]
                        + lambda_list[2] * lambda_list[3]
                    )
                    / denominator2,
                    (-lambda_list[0] * lambda_list[2] * lambda_list[3]) / denominator2,
                ],
                [
                    1 / denominator3,
                    (-lambda_list[0] - lambda_list[1] - lambda_list[3]) / denominator3,
                    (
                        lambda_list[0] * lambda_list[1]
                        + lambda_list[0] * lambda_list[3]
                        + lambda_list[1] * lambda_list[3]
                    )
                    / denominator3,
                    (-lambda_list[0] * lambda_list[1] * lambda_list[3]) / denominator3,
                ],
                [
                    1 / denominator4,
                    (-lambda_list[0] - lambda_list[1] - lambda_list[2]) / denominator4,
                    (
                        lambda_list[0] * lambda_list[1]
                        + lambda_list[0] * lambda_list[2]
                        + lambda_list[1] * lambda_list[2]
                    )
                    / denominator4,
                    (-lambda_list[0] * lambda_list[1] * lambda_list[2]) / denominator4,
                ],
            ]

    def get_coefficients_fn(self, order, interval_start, interval_end, lambda_list, tau):
        assert order in [1, 2, 3, 4]
        assert order == len(lambda_list), "the length of lambda list must be equal to the order"
        coefficients = []
        lagrange_coefficient = self.lagrange_polynomial_coefficient(order - 1, lambda_list)
        for i in range(order):
            coefficient = 0
            for j in range(order):
                if self.predict_x0:
                    coefficient += lagrange_coefficient[i][j] * self.get_coefficients_exponential_positive(
                        order - 1 - j, interval_start, interval_end, tau
                    )
                else:
                    coefficient += lagrange_coefficient[i][j] * self.get_coefficients_exponential_negative(
                        order - 1 - j, interval_start, interval_end
                    )
            coefficients.append(coefficient)
        assert len(coefficients) == order, "the length of coefficients does not match the order"
        return coefficients

    def stochastic_adams_bashforth_update(
        self,
785
        model_output: torch.Tensor,
Junsong Chen's avatar
Junsong Chen committed
786
        *args,
787
788
        sample: torch.Tensor,
        noise: torch.Tensor,
Junsong Chen's avatar
Junsong Chen committed
789
        order: int,
790
        tau: torch.Tensor,
Junsong Chen's avatar
Junsong Chen committed
791
        **kwargs,
792
    ) -> torch.Tensor:
Junsong Chen's avatar
Junsong Chen committed
793
794
795
796
        """
        One step for the SA-Predictor.

        Args:
797
            model_output (`torch.Tensor`):
Junsong Chen's avatar
Junsong Chen committed
798
799
800
                The direct output from the learned diffusion model at the current timestep.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
801
            sample (`torch.Tensor`):
Junsong Chen's avatar
Junsong Chen committed
802
803
804
805
806
                A current instance of a sample created by the diffusion process.
            order (`int`):
                The order of SA-Predictor at this timestep.

        Returns:
807
            `torch.Tensor`:
Junsong Chen's avatar
Junsong Chen committed
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
                The sample tensor at the previous timestep.
        """
        prev_timestep = args[0] if len(args) > 0 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
                raise ValueError(" missing `sample` as a required keyward argument")
        if noise is None:
            if len(args) > 2:
                noise = args[2]
            else:
                raise ValueError(" missing `noise` as a required keyward argument")
        if order is None:
            if len(args) > 3:
                order = args[3]
            else:
                raise ValueError(" missing `order` as a required keyward argument")
        if tau is None:
            if len(args) > 4:
                tau = args[4]
            else:
                raise ValueError(" missing `tau` as a required keyward argument")
        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
        model_output_list = self.model_outputs
        sigma_t, sigma_s0 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
        )
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)

        gradient_part = torch.zeros_like(sample)
        h = lambda_t - lambda_s0
        lambda_list = []

        for i in range(order):
            si = self.step_index - i
            alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si])
            lambda_si = torch.log(alpha_si) - torch.log(sigma_si)
            lambda_list.append(lambda_si)

        gradient_coefficients = self.get_coefficients_fn(order, lambda_s0, lambda_t, lambda_list, tau)

        x = sample

        if self.predict_x0:
            if (
                order == 2
            ):  ## if order = 2 we do a modification that does not influence the convergence order similar to unipc. Note: This is used only for few steps sampling.
                # The added term is O(h^3). Empirically we find it will slightly improve the image quality.
                # ODE case
                # gradient_coefficients[0] += 1.0 * torch.exp(lambda_t) * (h ** 2 / 2 - (h - 1 + torch.exp(-h))) / (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda(t_prev_list[-2]))
                # gradient_coefficients[1] -= 1.0 * torch.exp(lambda_t) * (h ** 2 / 2 - (h - 1 + torch.exp(-h))) / (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda(t_prev_list[-2]))
                temp_sigma = self.sigmas[self.step_index - 1]
                temp_alpha_s, temp_sigma_s = self._sigma_to_alpha_sigma_t(temp_sigma)
                temp_lambda_s = torch.log(temp_alpha_s) - torch.log(temp_sigma_s)
                gradient_coefficients[0] += (
                    1.0
                    * torch.exp((1 + tau**2) * lambda_t)
                    * (h**2 / 2 - (h * (1 + tau**2) - 1 + torch.exp((1 + tau**2) * (-h))) / ((1 + tau**2) ** 2))
                    / (lambda_s0 - temp_lambda_s)
                )
                gradient_coefficients[1] -= (
                    1.0
                    * torch.exp((1 + tau**2) * lambda_t)
                    * (h**2 / 2 - (h * (1 + tau**2) - 1 + torch.exp((1 + tau**2) * (-h))) / ((1 + tau**2) ** 2))
                    / (lambda_s0 - temp_lambda_s)
                )

        for i in range(order):
            if self.predict_x0:
                gradient_part += (
                    (1 + tau**2)
                    * sigma_t
                    * torch.exp(-(tau**2) * lambda_t)
                    * gradient_coefficients[i]
                    * model_output_list[-(i + 1)]
                )
            else:
                gradient_part += -(1 + tau**2) * alpha_t * gradient_coefficients[i] * model_output_list[-(i + 1)]

        if self.predict_x0:
            noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau**2 * h)) * noise
        else:
            noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * noise

        if self.predict_x0:
            x_t = torch.exp(-(tau**2) * h) * (sigma_t / sigma_s0) * x + gradient_part + noise_part
        else:
            x_t = (alpha_t / alpha_s0) * x + gradient_part + noise_part

        x_t = x_t.to(x.dtype)
        return x_t

    def stochastic_adams_moulton_update(
        self,
912
        this_model_output: torch.Tensor,
Junsong Chen's avatar
Junsong Chen committed
913
        *args,
914
915
916
        last_sample: torch.Tensor,
        last_noise: torch.Tensor,
        this_sample: torch.Tensor,
Junsong Chen's avatar
Junsong Chen committed
917
        order: int,
918
        tau: torch.Tensor,
Junsong Chen's avatar
Junsong Chen committed
919
        **kwargs,
920
    ) -> torch.Tensor:
Junsong Chen's avatar
Junsong Chen committed
921
922
923
924
        """
        One step for the SA-Corrector.

        Args:
925
            this_model_output (`torch.Tensor`):
Junsong Chen's avatar
Junsong Chen committed
926
927
928
                The model outputs at `x_t`.
            this_timestep (`int`):
                The current timestep `t`.
929
            last_sample (`torch.Tensor`):
Junsong Chen's avatar
Junsong Chen committed
930
                The generated sample before the last predictor `x_{t-1}`.
931
            this_sample (`torch.Tensor`):
Junsong Chen's avatar
Junsong Chen committed
932
933
934
935
936
                The generated sample after the last predictor `x_{t}`.
            order (`int`):
                The order of SA-Corrector at this step.

        Returns:
937
            `torch.Tensor`:
Junsong Chen's avatar
Junsong Chen committed
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
                The corrected sample tensor at the current timestep.
        """

        this_timestep = args[0] if len(args) > 0 else kwargs.pop("this_timestep", None)
        if last_sample is None:
            if len(args) > 1:
                last_sample = args[1]
            else:
                raise ValueError(" missing`last_sample` as a required keyward argument")
        if last_noise is None:
            if len(args) > 2:
                last_noise = args[2]
            else:
                raise ValueError(" missing`last_noise` as a required keyward argument")
        if this_sample is None:
            if len(args) > 3:
                this_sample = args[3]
            else:
                raise ValueError(" missing`this_sample` as a required keyward argument")
        if order is None:
            if len(args) > 4:
                order = args[4]
            else:
                raise ValueError(" missing`order` as a required keyward argument")
        if tau is None:
            if len(args) > 5:
                tau = args[5]
            else:
                raise ValueError(" missing`tau` as a required keyward argument")
        if this_timestep is not None:
            deprecate(
                "this_timestep",
                "1.0.0",
                "Passing `this_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        model_output_list = self.model_outputs
        sigma_t, sigma_s0 = (
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
        )
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        gradient_part = torch.zeros_like(this_sample)
        h = lambda_t - lambda_s0
        lambda_list = []
        for i in range(order):
            si = self.step_index - i
            alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si])
            lambda_si = torch.log(alpha_si) - torch.log(sigma_si)
            lambda_list.append(lambda_si)

        model_prev_list = model_output_list + [this_model_output]

        gradient_coefficients = self.get_coefficients_fn(order, lambda_s0, lambda_t, lambda_list, tau)

        x = last_sample

        if self.predict_x0:
            if (
                order == 2
            ):  ## if order = 2 we do a modification that does not influence the convergence order similar to UniPC. Note: This is used only for few steps sampling.
                # The added term is O(h^3). Empirically we find it will slightly improve the image quality.
                # ODE case
                # gradient_coefficients[0] += 1.0 * torch.exp(lambda_t) * (h / 2 - (h - 1 + torch.exp(-h)) / h)
                # gradient_coefficients[1] -= 1.0 * torch.exp(lambda_t) * (h / 2 - (h - 1 + torch.exp(-h)) / h)
                gradient_coefficients[0] += (
                    1.0
                    * torch.exp((1 + tau**2) * lambda_t)
                    * (h / 2 - (h * (1 + tau**2) - 1 + torch.exp((1 + tau**2) * (-h))) / ((1 + tau**2) ** 2 * h))
                )
                gradient_coefficients[1] -= (
                    1.0
                    * torch.exp((1 + tau**2) * lambda_t)
                    * (h / 2 - (h * (1 + tau**2) - 1 + torch.exp((1 + tau**2) * (-h))) / ((1 + tau**2) ** 2 * h))
                )

        for i in range(order):
            if self.predict_x0:
                gradient_part += (
                    (1 + tau**2)
                    * sigma_t
                    * torch.exp(-(tau**2) * lambda_t)
                    * gradient_coefficients[i]
                    * model_prev_list[-(i + 1)]
                )
            else:
                gradient_part += -(1 + tau**2) * alpha_t * gradient_coefficients[i] * model_prev_list[-(i + 1)]

        if self.predict_x0:
            noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau**2 * h)) * last_noise
        else:
            noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * last_noise

        if self.predict_x0:
            x_t = torch.exp(-(tau**2) * h) * (sigma_t / sigma_s0) * x + gradient_part + noise_part
        else:
            x_t = (alpha_t / alpha_s0) * x + gradient_part + noise_part

        x_t = x_t.to(x.dtype)
        return x_t

1043
1044
1045
1046
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps
Junsong Chen's avatar
Junsong Chen committed
1047

1048
        index_candidates = (schedule_timesteps == timestep).nonzero()
Junsong Chen's avatar
Junsong Chen committed
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060

        if len(index_candidates) == 0:
            step_index = len(self.timesteps) - 1
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        elif len(index_candidates) > 1:
            step_index = index_candidates[1].item()
        else:
            step_index = index_candidates[0].item()

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
        return step_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
    def _init_step_index(self, timestep):
        """
        Initialize the step_index counter for the scheduler.
        """

        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index
Junsong Chen's avatar
Junsong Chen committed
1075
1076
1077

    def step(
        self,
1078
        model_output: torch.Tensor,
Junsong Chen's avatar
Junsong Chen committed
1079
        timestep: int,
1080
        sample: torch.Tensor,
Junsong Chen's avatar
Junsong Chen committed
1081
1082
1083
1084
1085
1086
1087
1088
        generator=None,
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the SA-Solver.

        Args:
1089
            model_output (`torch.Tensor`):
Junsong Chen's avatar
Junsong Chen committed
1090
1091
1092
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
1093
            sample (`torch.Tensor`):
Junsong Chen's avatar
Junsong Chen committed
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
                A current instance of a sample created by the diffusion process.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.

        Returns:
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

        if self.step_index is None:
            self._init_step_index(timestep)

        use_corrector = self.step_index > 0 and self.last_sample is not None

        model_output_convert = self.convert_model_output(model_output, sample=sample)

        if use_corrector:
            current_tau = self.tau_func(self.timestep_list[-1])
            sample = self.stochastic_adams_moulton_update(
                this_model_output=model_output_convert,
                last_sample=self.last_sample,
                last_noise=self.last_noise,
                this_sample=sample,
                order=self.this_corrector_order,
                tau=current_tau,
            )

        for i in range(max(self.config.predictor_order, self.config.corrector_order - 1) - 1):
            self.model_outputs[i] = self.model_outputs[i + 1]
            self.timestep_list[i] = self.timestep_list[i + 1]

        self.model_outputs[-1] = model_output_convert
        self.timestep_list[-1] = timestep

        noise = randn_tensor(
            model_output.shape,
            generator=generator,
            device=model_output.device,
            dtype=model_output.dtype,
        )

        if self.config.lower_order_final:
            this_predictor_order = min(self.config.predictor_order, len(self.timesteps) - self.step_index)
            this_corrector_order = min(self.config.corrector_order, len(self.timesteps) - self.step_index + 1)
        else:
            this_predictor_order = self.config.predictor_order
            this_corrector_order = self.config.corrector_order

        self.this_predictor_order = min(this_predictor_order, self.lower_order_nums + 1)  # warmup for multistep
        self.this_corrector_order = min(this_corrector_order, self.lower_order_nums + 2)  # warmup for multistep
        assert self.this_predictor_order > 0
        assert self.this_corrector_order > 0

        self.last_sample = sample
        self.last_noise = noise

        current_tau = self.tau_func(self.timestep_list[-1])
        prev_sample = self.stochastic_adams_bashforth_update(
            model_output=model_output_convert,
            sample=sample,
            noise=noise,
            order=self.this_predictor_order,
            tau=current_tau,
        )

        if self.lower_order_nums < max(self.config.predictor_order, self.config.corrector_order - 1):
            self.lower_order_nums += 1

        # upon completion increase step index by one
        self._step_index += 1

        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

1178
    def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
Junsong Chen's avatar
Junsong Chen committed
1179
1180
1181
1182
1183
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
1184
            sample (`torch.Tensor`):
Junsong Chen's avatar
Junsong Chen committed
1185
1186
1187
                The input sample.

        Returns:
1188
            `torch.Tensor`:
Junsong Chen's avatar
Junsong Chen committed
1189
1190
1191
1192
1193
1194
1195
                A scaled input sample.
        """
        return sample

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
    def add_noise(
        self,
1196
1197
        original_samples: torch.Tensor,
        noise: torch.Tensor,
Junsong Chen's avatar
Junsong Chen committed
1198
        timesteps: torch.IntTensor,
1199
    ) -> torch.Tensor:
Junsong Chen's avatar
Junsong Chen committed
1200
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
1201
1202
1203
1204
        # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
        # for the subsequent add_noise calls
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
        alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
Junsong Chen's avatar
Junsong Chen committed
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
        timesteps = timesteps.to(original_samples.device)

        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps